Ultrasensitive Magnetic Field Sensors for Biomedical Applications

The development of magnetic field sensors for biomedical applications primarily focuses on equivalent magnetic noise reduction or overall design improvement in order to make them smaller and cheaper while keeping the required values of a limit of detection. One of the cutting-edge topics today is the use of magnetic field sensors for applications such as magnetocardiography, magnetotomography, magnetomyography, magnetoneurography, or their application in point-of-care devices. This introductory review focuses on modern magnetic field sensors suitable for biomedicine applications from a physical point of view and provides an overview of recent studies in this field. Types of magnetic field sensors include direct current superconducting quantum interference devices, search coil, fluxgate, magnetoelectric, giant magneto-impedance, anisotropic/giant/tunneling magnetoresistance, optically pumped, cavity optomechanical, Hall effect, magnetoelastic, spin wave interferometry, and those based on the behavior of nitrogen-vacancy centers in the atomic lattice of diamond.

[1]  Junlei Song,et al.  Impact of Adjustment of the Static Working Point on the 1/f Noise in a Negative Feedback GMI Magnetic Sensor , 2019, IEEE Sensors Journal.

[2]  A. Kholkin,et al.  Highly sensitive magnetic field sensor based on a metglas/bidomain lithium niobate composite shaped in form of a tuning fork , 2019, Journal of Magnetism and Magnetic Materials.

[3]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[4]  Ramon Villarino,et al.  Wireless Wearable Magnetometer-Based Sensor for Sleep Quality Monitoring , 2018, IEEE Sensors Journal.

[5]  Rama Komaragiri,et al.  Fabrication, characterization, and modelling of a novel via-less single metal level magnetic microcoil sensor for biosensing applications , 2019, Sensors and Actuators A: Physical.

[6]  Kensuke Sekihara,et al.  Magnetospinography visualizes electrophysiological activity in the cervical spinal cord , 2017, Scientific Reports.

[7]  T. Uchiyama,et al.  Development of precise off-diagonal magnetoimpedance gradiometer for magnetocardiography , 2017 .

[8]  Chih-Cheng Lu,et al.  A 3-Axis Miniature Magnetic Sensor Based on a Planar Fluxgate Magnetometer with an Orthogonal Fluxguide , 2015, Sensors.

[9]  M. Vázquez,et al.  Effect of Amorphous Wire Core Diameter on the Noise of an Orthogonal Fluxgate , 2018, IEEE Transactions on Magnetics.

[10]  W. Fang,et al.  A new method to simultaneously improve the sensitivity and absolute accuracy for CPT magnetometer , 2020, The European Physical Journal D.

[11]  S. Yuasa,et al.  Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(0 0 1) barrier , 2007 .

[12]  A. Marusenkov,et al.  Strain Dependence of Hysteretic Giant Magnetoimpedance Effect in Co-Based Amorphous Ribbon , 2019, Materials.

[13]  Yoshinobu Honkura,et al.  Development of amorphous wire type MI sensors for automobile use , 2002 .

[14]  Zhu Feng,et al.  A novel integrated microfluidic platform based on micro-magnetic sensor for magnetic bead manipulation and detection , 2018, Microfluidics and Nanofluidics.

[15]  Nguyen Huu Duc,et al.  DNA-magnetic bead detection using disposable cards and the anisotropic magnetoresistive sensor , 2016 .

[16]  D. P. Makhnovskiy,et al.  Off‐diagonal magnetoimpedance in amorphous microwires for low‐field magnetic sensors , 2016 .

[17]  Yisong Tan,et al.  Applications and Advances of Magnetoelastic Sensors in Biomedical Engineering: A Review , 2019, Materials.

[18]  Tufan Coskun Karalar,et al.  Output offset in silicon Hall effect based magnetic field sensors , 2019, Sensors and Actuators A: Physical.

[19]  Pavel Ripka,et al.  Magnetoresistive Sensor Development Roadmap (Non-Recording Applications) , 2019, IEEE Transactions on Magnetics.

[20]  Kiwoong Kim,et al.  SQUID-based ultralow-field MRI of a hyperpolarized material using signal amplification by reversible exchange , 2019, Scientific Reports.

[21]  S. Srinath,et al.  A Review of: “The SQUID Handbook: Fundamentals and Technology of SQUIDS and SQUID Systems” , 2006 .

[22]  M. Vázquez,et al.  Spin Waves Modes in Cobalt Nanowires Arrays , 2015, IEEE Transactions on Magnetics.

[23]  Svenja Knappe,et al.  Microfabricated Optically-Pumped Magnetometers for Biomagnetic Applications , 2016 .

[24]  Ali Hajimiri,et al.  A magnetic cell-based sensor. , 2012, Lab on a chip.

[25]  Ichiro Sasada,et al.  Fundamental Mode Orthogonal Fluxgate Magnetometer Applicable for Measurements of DC and Low-Frequency Magnetic Fields , 2018, IEEE Sensors Journal.

[26]  Bernhard Gleich,et al.  Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.

[27]  Kang Yang,et al.  SQUID Array With Optimal Compensating Configuration for Magnetocardiography Measurement in Different Environments , 2019, IEEE Transactions on Applied Superconductivity.

[28]  D. Viehland,et al.  A review on equivalent magnetic noise of magnetoelectric laminate sensors , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  Gang Liu,et al.  A skin-inspired tactile sensor for smart prosthetics , 2018, Science Robotics.

[30]  Jordi Madrenas,et al.  Integration of GMR Sensors with Different Technologies , 2016, Sensors.

[31]  H. Watanabe,et al.  Bandwidth analysis of AC magnetic field sensing based on electronic spin double-resonance of nitrogen-vacancy centers in diamond , 2019, Japanese Journal of Applied Physics.

[32]  David Berry,et al.  An Extremely Low Equivalent Magnetic Noise Magnetoelectric Sensor , 2011, Advanced materials.

[33]  A. Zvezdin,et al.  The effect of the disk magnetic element profile on the saturation field and noise of a magneto-modulation magnetic field sensor , 2015 .

[34]  Oswaldo Baffa,et al.  Low‐Cost Fetal Magnetocardiography: A Comparison of Superconducting Quantum Interference Device and Optically Pumped Magnetometers , 2019, Journal of the American Heart Association.

[35]  High-Sensitivity Three-Axis Vector Magnetometry Using Electron Spin Ensembles in Single-Crystal Diamond , 2019, IEEE Magnetics Letters.

[36]  Junichi Isoya,et al.  Subpicotesla Diamond Magnetometry , 2014, 1411.6553.

[37]  R. Hudák,et al.  Biomedical applications of glass-coated microwires , 2017, Journal of Magnetism and Magnetic Materials.

[38]  Yisong Tan,et al.  Wireless and Passive Magnetoelastic-Based Sensor for Force Monitoring of Artificial Bone , 2019, IEEE Sensors Journal.

[39]  Anders D. Henriksen,et al.  Planar Hall effect bridge sensors with NiFe/Cu/IrMn stack optimized for self-field magnetic bead detection , 2016 .

[40]  Yasuo Ando,et al.  Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors , 2018 .

[41]  V. Reddy,et al.  Single Magnetic Bead Detection in a Microfluidic Chip Using Planar Hall Effect Sensor , 2014 .

[42]  D. Fiorani,et al.  Magnetic Nanoparticle Characterization Using Nano-SQUID based on Niobium Dayem Bridges , 2012 .

[43]  Mikkel Fougt Hansen,et al.  Exchange-Biased AMR Bridges for Magnetic Field Sensing and Biosensing , 2017, IEEE Transactions on Magnetics.

[44]  R. Ramesh,et al.  Advances in magnetoelectric multiferroics , 2019, Nature Materials.

[45]  Jens Reermann,et al.  Real-Time Biomagnetic Signal Processing for Uncooled Magnetometers in Cardiology , 2019, IEEE Sensors Journal.

[46]  J. Greneche,et al.  Magneto-Elastic Resonance: Principles, Modeling and Applications , 2017 .

[47]  Shaorong Xie,et al.  A giant magnetoimpedance-based separable-type method for supersensitive detection of 10 magnetic beads at high frequency , 2019 .

[48]  M. D. Lukin,et al.  Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic , 2016, Science.

[49]  Gilbert Santiago Cañón Bermúdez,et al.  Wearable Magnetic Field Sensors for Flexible Electronics , 2014, Advanced materials.

[50]  Adriana Moreo,et al.  Nanoscale phase separation in colossal magnetoresistance materials: lessons for the cuprates? , 2002, cond-mat/0209689.

[51]  University of California,et al.  Miniature cavity-enhanced diamond magnetometer , 2017, 1706.02201.

[52]  M. Rivas,et al.  Cu impedance-based detection of superparamagnetic nanoparticles , 2013, Nanotechnology.

[53]  Spin Electronics Based Magnetic Sensors for Biomagnetic Measurements , 2014 .

[54]  S. Knappe,et al.  Characterization of noise sources in a microfabricated single-beam zero-field optically-pumped magnetometer. , 2019, Journal of applied physics.

[55]  L. V. Panina,et al.  Magneto-impedance in sandwich film for magnetic sensor heads , 1996 .

[56]  Gavin W. Morley,et al.  Medical applications of diamond magnetometry: commercial viability , 2017, 1705.01994.

[57]  Sebastian Luber,et al.  Topologically protected vortex structures for low-noise magnetic sensors with high linear range , 2018, Nature Electronics.

[58]  Mark C. Monti,et al.  Atomic Magnetometer Multisensor Array for rf Interference Mitigation and Unshielded Detection of Nuclear Quadrupole Resonance , 2016 .

[59]  F. Jelezko,et al.  DC - magnetometry with engineered nitrogen-vacancy spin ensembles in diamond. , 2019, Nano letters.

[60]  Matti Stenroos,et al.  Requirements for Coregistration Accuracy in On-Scalp MEG , 2017, bioRxiv.

[61]  Hadi Heidari,et al.  Magnetic biosensors: Modelling and simulation. , 2018, Biosensors & bioelectronics.

[62]  J. Gooding,et al.  Advances in the Application of Magnetic Nanoparticles for Sensing , 2019, Advanced materials.

[63]  Oswaldo Baffa,et al.  Magnetic fields from skeletal muscles: a valuable physiological measurement? , 2015, Front. Physiol..

[64]  S. Pustelny,et al.  Different sensitivities of two optical magnetometers realized in the same experimental arrangement , 2018, Scientific Reports.

[65]  Maher Kayal,et al.  Geometry influence on the Hall effect devices performance , 2010 .

[66]  E. Hagley,et al.  Symmetry-breaking inelastic wave-mixing atomic magnetometry , 2017, Science Advances.

[67]  Zhu Feng,et al.  An integrated magnetic microfluidic chip for rapid immunodetection of the prostate specific antigen using immunomagnetic beads , 2019, Microchimica Acta.

[68]  Jaap M J den Toonder,et al.  Integrated lab-on-chip biosensing systems based on magnetic particle actuation--a comprehensive review. , 2014, Lab on a chip.

[69]  N. Hamada,et al.  Detection of P300 brain waves using a Magneto- Impedance sensor , 2014, International Journal on Smart Sensing and Intelligent Systems.

[70]  Hailin Pan,et al.  Detection of AFP with an ultra-sensitive giant magnetoimpedance biosensor , 2019, Sensors and Actuators B: Chemical.

[71]  M. Ulvr Design of PCB search coils for AC magnetic flux density measurement , 2018 .

[72]  Lixin Xu,et al.  Highly Integrated MEMS Magnetic Sensor Based on GMI Effect of Amorphous Wire , 2019, Micromachines.

[73]  L. V. Panina,et al.  Magneto‐impedance effect in amorphous wires , 1994 .

[74]  K. Sekihara,et al.  Magnetocardiography Using a Magnetoresistive Sensor Array. , 2019, International heart journal.

[75]  N. Perov,et al.  New Multiferroic Composite Materials Consisting of Ferromagnetic, Ferroelectric, and Polymer Components , 2017, IEEE Transactions on Magnetics.

[76]  Carmine Granata,et al.  Fine-Tuning and Optimization of Superconducting Quantum Magnetic Sensors by Thermal Annealing , 2019, Sensors.

[77]  Jing Wu,et al.  Magnetic Lateral Flow Strip for the Detection of Cocaine in Urine by Naked Eyes and Smart Phone Camera , 2017, Sensors.

[78]  Wail Gueaieb,et al.  Guidance Mechanism for Flexible-Wing Aircraft Using Measurement-Interfaced Machine-Learning Platform , 2020, IEEE Transactions on Instrumentation and Measurement.

[79]  Chinthaka P. Gooneratne,et al.  On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization , 2016, Sensors.

[80]  Jiawen Chen,et al.  Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology , 2018, Sensors.

[81]  Ami E. Berkowitz,et al.  GIANT MAGNETIC FIELD DEPENDENT IMPEDANCE OF AMORPHOUS FECOSIB WIRE , 1994 .

[82]  Ronald L. Walsworth,et al.  Optical magnetic detection of single-neuron action potentials using quantum defects in diamond , 2016, Proceedings of the National Academy of Sciences.

[83]  U. Andersen,et al.  Nanotesla sensitivity magnetic field sensing using a compact diamond nitrogen-vacancy magnetometer , 2019, Applied Physics Letters.

[84]  P. Vetoshko,et al.  Rat Magnetocardiography Using a Flux-Gate Sensor Based on Iron Garnet Films , 2016, BioMed 2016.

[85]  Mathieu Bourguignon,et al.  Coupling between human brain activity and body movements: Insights from non-invasive electromagnetic recordings , 2019, NeuroImage.

[86]  L. Vékás,et al.  Magnetic immunochromatographic test for histamine detection in wine , 2019, Analytical and Bioanalytical Chemistry.

[87]  Brajalal Sinha,et al.  Planar Hall Effect Ring Sensors for High Field-Sensitivity , 2011 .

[88]  S. Atalay,et al.  Magnetoelastic sensor for magnetic nanoparticle detection , 2018, Journal of Magnetism and Magnetic Materials.

[89]  Mitra Djamal and Ramli Ramli Giant Magnetoresistance Sensors Based on Ferrite Material and Its Applications , 2017 .

[90]  Simone Gambini,et al.  Magnetic Relaxation Detector for Microbead Labels , 2012, IEEE Journal of Solid-State Circuits.

[91]  Alex I. Braginski,et al.  Biomagnetism using SQUIDs: status and perspectives , 2006 .

[92]  Yuzhong Jiang,et al.  Search Coil Magnetometer Based on Multi-parameter Joint Optimization Design in Ultra Low-Frequency Communication , 2018, Journal of Magnetics.

[93]  Krishnamoorthy Sivakumar,et al.  Deep Neural Network a Posteriori Probability Detector for Two-Dimensional Magnetic Recording , 2020, IEEE Transactions on Magnetics.

[94]  Lauri Parkkonen,et al.  On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers , 2018, NeuroImage.

[95]  T. Uchiyama,et al.  Measurement of Spontaneous Oscillatory Magnetic Field of Guinea-Pig Smooth Muscle Preparation Using Pico-Tesla Resolution Amorphous Wire Magneto-Impedance Sensor , 2011, IEEE Transactions on Magnetics.

[96]  D Issadore,et al.  Magnetic sensing technology for molecular analyses. , 2014, Lab on a chip.

[97]  Valentina Zhukova,et al.  Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials , 2017 .

[98]  A. Balandin,et al.  A Magnetometer Based on a Spin Wave Interferometer , 2017, Scientific Reports.

[99]  A. Zvezdin,et al.  Flux-gate magnetic field sensor based on yttrium iron garnet films for magnetocardiography investigations , 2016 .

[100]  Ronald L. Walsworth,et al.  Nanoscale magnetometry with NV centers in diamond , 2013 .

[101]  Giulio Sandini,et al.  Tactile Sensing—From Humans to Humanoids , 2010, IEEE Transactions on Robotics.

[102]  Laura Anfossi,et al.  Multiplex Lateral Flow Immunoassay: An Overview of Strategies towards High-throughput Point-of-Need Testing , 2018, Biosensors.

[103]  Eckhard Quandt,et al.  Inverse bilayer magnetoelectric thin film sensor , 2016 .

[104]  W. Bowen,et al.  Invited Article: Scalable high-sensitivity optomechanical magnetometers on a chip , 2018, APL Photonics.

[105]  L. Malkinski,et al.  Tunneling magnetoresistance in granular cermet films with particle size distribution , 2004 .

[106]  Audrey Lee-Gosselin,et al.  Mapping the microscale origins of magnetic resonance image contrast with subcellular diamond magnetometry , 2016, Nature Communications.

[107]  J. Arnbak,et al.  Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer , 2018, Scientific Reports.

[108]  Pathan Fayaz Khan,et al.  Feasibility study on measurement of magnetocardiography (MCG) using fluxgate magnetometer , 2018 .

[109]  T. Nguyen,et al.  Magnetoresistive performances in exchange-biased spin valves and their roles in low-field magnetic sensing applications , 2018, Journal of Science: Advanced Materials and Devices.

[110]  Kang Yang,et al.  SQUID Gradiometer Module for Fetal Magnetocardiography Measurements Inside a Thin Magnetically Shielded Room , 2019, IEEE Transactions on Applied Superconductivity.

[111]  R. Wakai,et al.  Characterizing atomic magnetic gradiometers for fetal magnetocardiography. , 2019, The Review of scientific instruments.

[112]  Run-Wei Li,et al.  Rapid detection of Escherichia coli O157:H7 using tunneling magnetoresistance biosensor , 2017 .

[113]  Boris Murmann,et al.  Matrix-insensitive protein assays push the limits of biosensors in medicine , 2009, Nature Medicine.

[114]  Anders D. Henriksen,et al.  Experimental comparison of ring and diamond shaped planar Hall effect bridge magnetic field sensors , 2015 .

[115]  M. D. Lukin,et al.  Optical magnetic imaging of living cells , 2013, Nature.

[116]  D. Lacour,et al.  Four states magnetic dots: a design selection by micromagnetic modeling , 2016, NanoScience + Engineering.

[117]  Vladislav Gerginov,et al.  Pulsed operation of a miniature scalar optically pumped magnetometer. , 2017, Journal of the Optical Society of America. B, Optical physics.

[118]  N. Perov,et al.  Elastically coupled ferromagnetic and ferroelectric microparticles: New multiferroic materials based on polymer, NdFeB and PZT particles , 2017, Journal of Magnetism and Magnetic Materials.

[119]  Susana Cardoso,et al.  Implementing a strategy for on-chip detection of cell-free DNA fragments using GMR sensors: A translational application in cancer diagnostics using ALU elements , 2016 .

[120]  Ana Silva,et al.  Linearization strategies for high sensitivity magnetoresistive sensors , 2015 .

[121]  Alfredo García-Arribas,et al.  Thin-Film Magneto-Impedance Sensors , 2017 .

[122]  Inga Ennen,et al.  Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications , 2016, Sensors.

[123]  Eugene S. Polzik,et al.  Non-invasive detection of animal nerve impulses with an atomic magnetometer operating near quantum limited sensitivity , 2016, Scientific Reports.

[124]  Gilles Cauffet,et al.  Magnetoencephalography With Optically Pumped 4He Magnetometers at Ambient Temperature , 2019, IEEE Transactions on Medical Imaging.

[125]  Matti Stenroos,et al.  Measuring MEG closer to the brain: Performance of on-scalp sensor arrays , 2016, NeuroImage.

[126]  F. Jelezko,et al.  Compact integrated magnetometer based on nitrogen-vacancy centres in diamond , 2019, Diamond and Related Materials.

[127]  John Clarke,et al.  SQUID-detected magnetic resonance imaging in microtesla fields. , 2007, Annual review of biomedical engineering.

[128]  L. V. Panina,et al.  Recent Advances of Pico-Tesla Resolution Magneto-Impedance Sensor Based on Amorphous Wire CMOS IC MI Sensor , 2012, IEEE Transactions on Magnetics.

[129]  A. Ney,et al.  Tutorial: Basic principles, limits of detection, and pitfalls of highly sensitive SQUID magnetometry for nanomagnetism and spintronics , 2018, Journal of Applied Physics.

[130]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[131]  Larissa V. Panina,et al.  Temperature effects on magnetization processes and magnetoimpedance in low magnetostrictive amorphous microwires , 2017, Journal of Magnetism and Magnetic Materials.

[132]  Matthew J. Brookes,et al.  Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography , 2019, NeuroImage.

[133]  Dhruv R. Seshadri,et al.  Wearable sensors for monitoring the internal and external workload of the athlete , 2019, npj Digital Medicine.

[134]  R. Walsworth,et al.  Simultaneous Broadband Vector Magnetometry Using Solid-State Spins , 2018, Physical Review Applied.

[135]  A. Wickenbrock,et al.  Zero-Field Magnetometry Based on Nitrogen-Vacancy Ensembles in Diamond , 2018, Physical Review Applied.

[136]  Mikkel Fougt Hansen,et al.  Planar Hall effect bridge geometries optimized for magnetic bead detection , 2014 .

[137]  M. Janošek Parallel Fluxgate Magnetometers , 2017 .

[138]  Matthew J. Brookes,et al.  A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography , 2018, NeuroImage.

[139]  M. Plenio,et al.  Blueprint for nanoscale NMR , 2017, Scientific Reports.

[140]  Daniil Karnaushenko,et al.  Magnetosensitive e-skins with directional perception for augmented reality , 2018, Science Advances.

[141]  D. Englund,et al.  Distributed Quantum Fiber Magnetometry , 2019, Laser & Photonics Reviews.

[142]  R. Wakai,et al.  Fetal magnetocardiogram waveform characteristics , 2019, Physiological measurement.

[143]  Y. Feng,et al.  3D nano-bridge-based SQUID susceptometers for scanning magnetic imaging of quantum materials , 2019, Nanotechnology.

[144]  Halina Rubinsztein-Dunlop,et al.  Ultrasensitive Optomechanical Magnetometry , 2014, Advanced materials.

[145]  Kun Yu,et al.  Monitoring and Assessing the Degradation Rate of Magnesium-Based Artificial Bone In Vitro Using a Wireless Magnetoelastic Sensor , 2018, Sensors.

[146]  Conrad D. James,et al.  Magnetic Source Imaging Using a Pulsed Optically Pumped Magnetometer Array , 2019, IEEE Transactions on Instrumentation and Measurement.

[147]  Petr I. Nikitin,et al.  New type of biosensor based on magnetic nanoparticle detection , 2007 .

[148]  D. T. Huong Giang,et al.  Detection of magnetic nanoparticles using simple AMR sensors in Wheatstone bridge , 2016 .

[149]  Lauri Parkkonen,et al.  Optical Co-registration of MRI and On-scalp MEG , 2018, Scientific Reports.

[150]  Andres M. Perez,et al.  Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus , 2016, Front. Microbiol..

[151]  A. Luiten,et al.  Ultrastable Optical Magnetometry , 2019, Physical Review Applied.

[152]  Amber L. Dagel,et al.  Four-channel optically pumped atomic magnetometer for magnetoencephalography. , 2016, Optics express.

[153]  M. Vázquez,et al.  Spin waves modes in cobalt nanowires arrays , 2015, 2015 IEEE Magnetics Conference (INTERMAG).

[154]  Shinsuke Nakayama,et al.  Biomagnetic field detection using very high sensitivity magnetoimpedance sensors for medical applications , 2009 .

[155]  Michiharu Yamamoto,et al.  Recent Advances of Amorphous Wire CMOS IC Magneto-Impedance Sensors: Innovative High-Performance Micromagnetic Sensor Chip , 2015, J. Sensors.

[156]  Matthew J. Brookes,et al.  On the Potential of a New Generation of Magnetometers for MEG: A Beamformer Simulation Study , 2016, PloS one.

[157]  N. Akdoğan,et al.  Interface-induced enhancement of sensitivity in NiFe/Pt/IrMn-based planar hall sensors with nanoTesla resolution , 2019, Sensors and Actuators A: Physical.

[158]  D. Lago-Cachón,et al.  Eddy-current sensing of superparamagnetic nanoparticles with spiral-like copper circuits , 2014 .

[159]  I. Mann,et al.  Low-noise permalloy ring cores for fluxgate magnetometers , 2019, Geoscientific Instrumentation, Methods and Data Systems.

[160]  C. Ye,et al.  Measurement of Triaxial Magnetocardiography Using High Sensitivity Tunnel Magnetoresistance Sensor , 2019, IEEE Sensors Journal.

[161]  Chih-Cheng Lu,et al.  Three-Axis Micofluxgate With a Fluxguide , 2019, IEEE Transactions on Magnetics.

[162]  J. Kitching,et al.  A microfabricated optically-pumped magnetic gradiometer. , 2017, Applied physics letters.

[163]  Zhong Lin Wang,et al.  Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing , 2018, Nature Communications.

[164]  S. Wereley,et al.  Magnetic Focus Lateral Flow Sensor for Detection of Cervical Cancer Biomarkers. , 2019, Analytical chemistry.

[165]  Faxiang Qin,et al.  Temperature-stable magnetoimpedance (MI) of current-annealed Co-based amorphous microwires , 2019, Journal of Magnetism and Magnetic Materials.

[166]  P. Nealey,et al.  All-Optical Cryogenic Thermometry Based on Nitrogen-Vacancy Centers in Nanodiamonds , 2019, Physical Review Applied.

[167]  M. Arzeo,et al.  Transport and noise properties of YBCO nanowire based nanoSQUIDs , 2019, Superconductor Science and Technology.

[168]  Keiji Enpuku,et al.  SQUIDs in biomagnetism: a roadmap towards improved healthcare , 2016 .

[169]  J. Hedley,et al.  The Construction of a Graphene Hall Effect Magnetometer , 2018, IEEE Sensors Journal.

[170]  Jianhua Zhu,et al.  A Two-Dimensional Wireless and Passive Sensor for Stress Monitoring , 2019, Sensors.

[171]  Kun Yu,et al.  Wireless Magnetoelasticity-Based Sensor for Monitoring the Degradation Behavior of Polylactic Acid Artificial Bone In Vitro , 2019, Applied Sciences.

[172]  F. Maestú,et al.  Neuropsychological and neurophysiological characterization of mild cognitive impairment and Alzheimer's disease in Down syndrome , 2019, Neurobiology of Aging.

[173]  R. Schirhagl,et al.  Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. , 2014, Annual review of physical chemistry.

[174]  Philipp Pirro,et al.  Reconfigurable nanoscale spin-wave directional coupler , 2018, Science Advances.

[175]  Zhenghui Hu,et al.  Multi-channel spin exchange relaxation free magnetometer towards two-dimensional vector magnetoencephalography. , 2019, Optics express.

[176]  Nick Pawlowski,et al.  A portable diagnostic device for cardiac magnetic field mapping , 2016, 1609.05771.

[177]  E. Hristoforou,et al.  Perspective: Magnetoresistive sensors for biomedicine , 2018, Journal of Applied Physics.

[178]  S. Y. Sung,et al.  Magnetoresistive Biosensors for Direct Detection of Magnetic Nanoparticle Conjugated Biomarkers on a Chip , 2019, SPIN.

[179]  Denys Makarov,et al.  Highly compliant planar Hall effect sensor with sub 200 nT sensitivity , 2019, npj Flexible Electronics.

[180]  E. P. Harrison,et al.  Electrical Properties of Wires of High Permeability , 1935, Nature.

[181]  V. Savitski Optical gain in NV-colour centres for highly-sensitive magnetometry: a theoretical study , 2017 .

[182]  Svenja Knappe,et al.  Microfabricated optically pumped magnetometer arrays for biomedical imaging , 2017, OPTO.

[183]  E. L. Tan,et al.  Wireless, magnetic-based sensors for biomedical applications , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[184]  Petr I. Nikitin,et al.  Epitaxial yttrium iron garnet film as an active medium of an even-harmonic magnetic field transducer , 2003 .

[185]  Hadi Heidari,et al.  CMOS Magnetic Sensors for Wearable Magnetomyography , 2018, 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[186]  Stephan Lau,et al.  Optimal Magnetic Sensor Vests for Cardiac Source Imaging , 2016, Sensors.

[187]  Halina Rubinsztein-Dunlop,et al.  Modelling of Cavity Optomechanical Magnetometers , 2018, Sensors.

[188]  Y. Honkura,et al.  Off-diagonal impedance in amorphous wires and its application to linear magnetic sensors , 2004, IEEE Transactions on Magnetics.

[189]  S. Tumański Induction coil sensors—a review , 2007 .

[190]  Bruno-Marcel Mackert,et al.  Magnetoneurography: theory and application to peripheral nerve disorders , 2004, Clinical Neurophysiology.

[191]  R. Dynes,et al.  Direct-coupled micro-magnetometer with Y-Ba-Cu-O nano-slit SQUID fabricated with a focused helium ion beam , 2018, Applied physics letters.

[192]  K. Sauer,et al.  RF atomic magnetometer array with over 40 dB interference suppression using electron spin resonance. , 2018, Journal of magnetic resonance.

[193]  L. Rakhlin,et al.  Advanced field magnetometers comparative study , 2001 .

[194]  N. Duc,et al.  Simple planar Hall effect based sensors for low-magnetic field detection , 2019, Advances in Natural Sciences: Nanoscience and Nanotechnology.

[195]  Kiwoong Kim,et al.  In-situ Overhauser-enhanced nuclear magnetic resonance at less than 1 μT using an atomic magnetometer. , 2019, Journal of magnetic resonance.

[196]  S. Knappe,et al.  An all-optical, high-sensitivity magnetic gradiometer , 2002 .

[197]  Magnetoencephalography using a compact multichannel atomic magnetometer with pump-probe configuration , 2018, AIP Advances.

[198]  Youngdo Jung,et al.  Remote tactile sensing system integrated with magnetic synapse , 2017, Scientific Reports.

[199]  Y. Wen,et al.  Improved magnetic sensor using laminated magnetic multilayer with coupled exciting and sensing micro planar coils , 2018, Sensors and Actuators A: Physical.

[200]  G. Chanteur,et al.  Principle and Performance of a Dual-Band Search Coil Magnetometer: A New Instrument to Investigate Fluctuating Magnetic Fields in Space , 2010, IEEE Sensors Journal.

[201]  T. Yumoto,et al.  Magnetic Search Coil (MSC) of Plasma Wave Experiment (PWE) aboard the Arase (ERG) satellite , 2018, Earth, Planets and Space.

[202]  R. Hari,et al.  The brain in time: insights from neuromagnetic recordings , 2010, Annals of the New York Academy of Sciences.

[203]  Ingo Richter,et al.  Calibration of Off-the-Shelf Anisotropic Magnetoresistance Magnetometers , 2019, Sensors.

[204]  Alexander Vol,et al.  The Role of the Chemically Induced Polarization of Nuclei in Biology , 2018 .

[205]  Varun Prakash,et al.  Quantum-Enhanced Optomechanical Magnetometry , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[206]  S. James Allen,et al.  Cross Junction Spin Wave Logic Architecture , 2014, IEEE Transactions on Magnetics.

[207]  Hakho Lee,et al.  Recent Developments in Magnetic Diagnostic Systems. , 2015, Chemical reviews.

[208]  V. Zhukova,et al.  Magnetoresistance and Kondo-like behaviour in Co5Cu95 microwires , 2016 .

[209]  Study of the Noise in Multicore Orthogonal Fluxgate Sensors Based on Ni-Fe/Cu Composite Microwire Arrays , 2009, IEEE Transactions on Magnetics.

[210]  Harold Weinstock,et al.  SQUID sensors : fundamentals, fabrication, and applications , 1996 .

[211]  Jixing Zhang,et al.  High-efficiency fluorescence collection for NV- center ensembles in diamond. , 2019, Optics express.

[212]  H. Watanabe,et al.  Demonstration of vector magnetic field sensing by simultaneous control of nitrogen-vacancy centers in diamond using multi-frequency microwave pulses , 2018, Applied Physics Letters.

[213]  A. Fedyanin,et al.  Permalloy-based magnetoplasmonic crystals for sensor applications , 2019, Journal of Magnetism and Magnetic Materials.

[214]  M. N. Baibich,et al.  Kondo-like behavior and GMR effect in granular Cu90Co10 microwires , 2017 .

[215]  T. Uchiyama,et al.  Design and Demonstration of Novel Magnetoencephalogram Detectors , 2019, IEEE Transactions on Magnetics.

[216]  J. V. Van Erp,et al.  Touch down: the effect of artificial touch cues on orientation in microgravity. , 2006, Neuroscience letters.

[217]  A. Manzin,et al.  Quantification of Magnetic Nanobeads With Micrometer Hall Sensors , 2018, IEEE Sensors Journal.

[218]  Wei Wang,et al.  Development of a multiplexed giant magnetoresistive biosensor array prototype to quantify ovarian cancer biomarkers. , 2019, Biosensors & bioelectronics.

[219]  Vania Silverio,et al.  Challenges and trends in magnetic sensor integration with microfluidics for biomedical applications , 2017 .

[220]  V. E. Makhotkin,et al.  Magnetic field sensors based on amorphous ribbons , 1991 .

[221]  Antoine Nowodzinski,et al.  Nitrogen-Vacancy centers in diamond for current imaging at the redistributive layer level of Integrated Circuits , 2015, Microelectron. Reliab..

[222]  Wei Zhang,et al.  Unshielded scalar magnetometer based on nonlinear magneto-optical rotation with amplitude modulated light , 2016, 2016 IEEE International Frequency Control Symposium (IFCS).

[223]  Matthew J. Brookes,et al.  A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers , 2017, NeuroImage.

[224]  Shaorong Xie,et al.  Magnetic impedance biosensor: A review. , 2017, Biosensors & bioelectronics.

[225]  Alexander Minakov,et al.  Ultrasensitive detection enabled by nonlinear magnetization of nanomagnetic labels. , 2018, Nanoscale.

[226]  Qiang Lin,et al.  Simultaneously improving the sensitivity and absolute accuracy of CPT magnetometer. , 2014, Optics express.

[227]  I. Sasada,et al.  Gradiometer and Magnetometer Integration Using a Pair of Fundamental Mode Orthogonal Fluxgate Sensor Heads , 2015, IEEE Transactions on Magnetics.

[228]  F. Missell,et al.  Enhanced response from field-annealed magnetoelastic strain sensor , 2016 .

[229]  E. Neu,et al.  Optimized single-crystal diamond scanning probes for high sensitivity magnetometry , 2018, New Journal of Physics.

[230]  P. Vetoshko,et al.  Magnetoplasmonic Crystals for Highly Sensitive Magnetometry , 2018, ACS Photonics.

[231]  K. Mohri,et al.  Amorphous Wire and CMOS IC Based Magneto-Impedance Sensors—Origin, Topics, and Future , 2007 .

[232]  L. Bougas,et al.  Infrared laser threshold magnetometry with a NV doped diamond intracavity etalon. , 2018, Optics express.

[233]  D. J. Mapps,et al.  Remote magnetic sensing of people , 2003 .

[234]  Yunbo Shi,et al.  Magnetometry for precision measurement using frequency-modulation microwave combined efficient photon-collection technique on an ensemble of nitrogen-vacancy centers in diamond. , 2018, Optics express.

[235]  Fan Wang,et al.  Observing the steady-state visual evoked potentials with a compact quad-channel spin exchange relaxation-free magnetometer , 2019, Chinese Physics B.

[236]  Susana Cardoso,et al.  Detection of BCG bacteria using a magnetoresistive biosensor: A step towards a fully electronic platform for tuberculosis point-of-care detection. , 2018, Biosensors & bioelectronics.

[237]  V. Novosad,et al.  Microfabricated magnetic structures for future medicine: from sensors to cell actuators. , 2012, Nanomedicine.

[238]  Xin Fu,et al.  Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections , 2018, Sensors.

[239]  R. Weissleder,et al.  Single cell magnetic imaging using a quantum diamond microscope , 2015, Nature Methods.

[240]  M. Wuttig,et al.  Magnetoelectric magnetic field sensors , 2018, MRS Bulletin.

[241]  Tsuyoshi Uchiyama,et al.  Amorphous wire and CMOS IC-based sensitive micromagnetic sensors utilizing magnetoimpedance (MI) and stress-impedance (SI) effects , 2002 .

[242]  V. Zhukova,et al.  Tailoring the High-Frequency Giant Magnetoimpedance Effect of Amorphous Co-Rich Microwires , 2015, IEEE Magnetics Letters.