Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface

[1] Visible-near infrared reflectance spectra acquired by the Mars Express Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) spectrometer are used to estimate the absolute water content within the uppermost fraction of the Martian regolith. This upper surface layer represents the boundary between the regolith and atmosphere; thus the amount of water stored in these two reservoirs and at this boundary is expected to vary spatially and temporally with changing equilibrium conditions. We have applied models derived from laboratory experiments relating the strength of the 3 μm hydration feature to absolute water content to OMEGA spectra acquired during the first ∼1200 orbits of the Mars Express mission to estimate the H2O content of the Martian surface. Three methods were used to examine the strength of the 3 μm absorption: integrated band depth, apparent absorbance, and the effective single-particle absorption-thickness (ESPAT) parameter. Integrated band depth and apparent absorbance values are correlated to albedo when derived from reflectance spectra, implying that bright regions are more hydrated than dark regions. The ESPAT parameter, however, relies on single scattering albedo instead of reflectance and is capable of estimating absolute water content within ±1 wt.% H2O for a wide range of albedo values, compositions, and particle sizes. Applying this model to the OMEGA data reveals that bright and dark regions commonly have similar water contents in equatorial regions and the largest spatial variations in H2O occur as a function of latitude. Equatorial regions exhibit water contents in the range of ∼2–5 wt.%, whereas latitudes higher than ∼45°N are characterized by a continuous increase in H2O with latitude from ∼5–15 wt.%. Phyllosilicate and sulfate bearing terrains are more hydrated than average bright and dark regions and their locations are in widely separated areas of Noachian-aged material, suggesting chemical alteration by water-rock interaction may have been spatially extensive in the early history of Mars.

[1]  W. Sinton,et al.  On the composition of martian surface materials , 1967 .

[2]  John B. Adams,et al.  Spectral reflectance 0.4 to 2.0 microns of silicate rock powders. , 1967 .

[3]  A. Emslie,et al.  Spectral reflectance and emittance of particulate materials. 2: application and results. , 1973, Applied optics.

[4]  J. A. Decker,et al.  High altitude infrared spectroscopic evidence for bound water on Mars. , 1973 .

[5]  K. Herr,et al.  Evidence About Hydrate and Solid Water in the Martian Surface From the , 1974 .

[6]  D. R. Rushneck,et al.  The search for organic substances and inorganic volatile compounds in the surface of Mars , 1977 .

[7]  Roger N. Clark,et al.  Spectral properties of mixtures of montmorillonite and dark carbon grains: Implications for remote sensing minerals containing chemically and physically adsorbed water , 1983 .

[8]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[9]  P. Christensen Regional dust deposits on Mars - Physical properties, age, and history , 1986 .

[10]  S. Erard,et al.  Results from the ISM experiment , 1989, Nature.

[11]  John F. Mustard,et al.  Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra , 1989 .

[12]  J. Salisbury,et al.  The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals , 1992 .

[13]  H. J. Moore,et al.  The Martian surface layer , 1992 .

[14]  Carle M. Pieters,et al.  Optical effects of space weathering: The role of the finest fraction , 1993 .

[15]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[16]  S. Erard,et al.  Spatial Variations in the Spectral Properties of Bright Regions on Mars , 1993 .

[17]  A. Zent,et al.  Simultaneous adsorption of CO2 and H2O under Mars‐like conditions and application to the evolution of the Martian climate , 1994 .

[18]  Bruce M. Jakosky,et al.  The distribution and behavior of Martian ground ice during past and present epochs , 1995 .

[19]  W. Calvin Variation of the 3-μm absorption feature on Mars: observations over eastern Valles Marineris by the mariner 6 infrared spectrometer , 1997 .

[20]  A. Zent,et al.  Measurement of H2O adsorption under Mars-like conditions: Effects of adsorbent heterogeneity , 1997 .

[21]  Stephane Erard,et al.  New Composite Spectra of Mars, 0.4–5.7 μm , 1997 .

[22]  G. Rossman,et al.  Water content of the Martian soil: Laboratory simulations of reflectance spectra , 1998 .

[23]  John F. Mustard,et al.  Near-Infrared Spectral Variations of Martian Surface Materials from ISM Imaging Spectrometer Data , 2000 .

[24]  M. Mellon,et al.  High-Resolution Thermal Inertia Mapping from the Mars Global Surveyor Thermal Emission Spectrometer , 2000 .

[25]  G. Arnold,et al.  Near-infrared reflectance spectroscopy of bulk analog materials for planetary crust , 2001 .

[26]  J. Bandfield,et al.  Multiple emission angle surface–atmosphere separations of thermal emission spectrometer data , 2001 .

[27]  Robert L. Tokar,et al.  Global Distribution of Neutrons from Mars: Results from Mars Odyssey , 2002, Science.

[28]  W. Boynton,et al.  Maps of Subsurface Hydrogen from the High Energy Neutron Detector, Mars Odyssey , 2002, Science.

[29]  B. Hapke,et al.  Scattering properties of planetary regolith analogs , 2002 .

[30]  S. Ruff,et al.  Bright and dark regions on Mars: Particle size and mineralogical characteristics based on thermal emission spectrometer data , 2002 .

[31]  P. A. J. Englert,et al.  Distribution of Hydrogen in the Near Surface of Mars: Evidence for Subsurface Ice Deposits , 2002, Science.

[32]  S. Ruff Spectral evidence for zeolite in the dust on Mars , 2002 .

[33]  Mark I. Richardson,et al.  On the orbital forcing of Martian water and CO2 cycles: A general circulation model study with simplified volatile schemes , 2003 .

[34]  D. Vaniman,et al.  Stability of hydrous minerals on the martian surface , 2003 .

[35]  Jeffrey S. Kargel,et al.  Hydrated states of MgSO4 at equatorial latitudes on Mars , 2004 .

[36]  P. Christensen GLOBAL MAPPING OF MARTIAN BOUND WATER AT 6.1 MICRONS BASED ON TES DATA: SEASONAL HYDRATION-DEHYDRATION OF SURFACE MINERALS. R. O. Kuzmin , 2004 .

[37]  Jeffrey R. Johnson,et al.  In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars , 2004, Science.

[38]  David L. Bish,et al.  Magnesium sulphate salts and the history of water on Mars , 2004, Nature.

[39]  W. Calvin,et al.  Hydration state of the Martian coarse‐grained hematite exposures: Implications for their origin and evolution , 2004 .

[40]  P H Smith,et al.  Textures of the soils and rocks at Gusev Crater from Spirit's Microscopic Imager. , 2004, Science.

[41]  Thomas H. Prettyman,et al.  The presence and stability of ground ice in the southern hemisphere of Mars , 2004 .

[42]  M. D. Smith,et al.  Mineralogy at Meridiani Planum from the Mini-TES Experiment on the Opportunity Rover , 2004, Science.

[43]  François Poulet,et al.  OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .

[44]  William V. Boynton,et al.  Global distribution of near-surface hydrogen on Mars , 2004 .

[45]  J. Mustard,et al.  Quantifying absolute water content of minerals using near‐infrared reflectance spectroscopy , 2005 .

[46]  A. Knoll,et al.  Stratigraphy and sedimentology of a dry to wet eolian depositional system, Burns formation, Meridiani Planum, Mars , 2005 .

[47]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[48]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[49]  A. R. Tice,et al.  The analysis of water in the Martian regolith , 1979, Journal of Molecular Evolution.

[50]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[51]  T. Encrenaz,et al.  Mars Surface Diversity as Revealed by the OMEGA/Mars Express Observations , 2005, Science.

[52]  Jean-Pierre Bibring,et al.  Sulfates in the North Polar Region of Mars Detected by OMEGA/Mars Express , 2005, Science.

[53]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[54]  J. Carey,et al.  Hydration-dehydration behavior and thermodynamics of chabazite , 2005 .

[55]  Jean-Pierre Bibring,et al.  Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View , 2005, Science.

[56]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[57]  F Forget,et al.  Formation of Glaciers on Mars by Atmospheric Precipitation at High Obliquity , 2006, Science.

[58]  Nathalie A. Cabrol,et al.  Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .

[59]  J. Mustard,et al.  Estimating the water content of hydrated minerals using reflectance spectroscopy I. Effects of darkening agents and low-albedo materials , 2007 .

[60]  J. Mustard,et al.  Estimating the water content of hydrated minerals using reflectance spectroscopy II. Effects of particle size , 2007 .

[61]  J. Mustard,et al.  Hydration state of the Martian surface as seen by Mars Express OMEGA: 1. Analysis of the 3 μm hydration feature , 2007 .

[62]  Duccio Rocchini,et al.  Theory of Reflectance and Emittance Spectroscopy , 2008 .