DTI Image Registration under Probabilistic Fiber Bundles Tractography Learning

Diffusion Tensor Imaging (DTI) image registration is an essential step for diffusion tensor image analysis. Most of the fiber bundle based registration algorithms use deterministic fiber tracking technique to get the white matter fiber bundles, which will be affected by the noise and volume. In order to overcome the above problem, we proposed a Diffusion Tensor Imaging image registration method under probabilistic fiber bundles tractography learning. Probabilistic tractography technique can more reasonably trace to the structure of the nerve fibers. The residual error estimation step in active sample selection learning is improved by modifying the residual error model using finite sample set. The calculated deformation field is then registered on the DTI images. The results of our proposed registration method are compared with 6 state-of-the-art DTI image registration methods under visualization and 3 quantitative evaluation standards. The experimental results show that our proposed method has a good comprehensive performance.

[1]  Konstantinos Arfanakis,et al.  Enhanced ICBM diffusion tensor template of the human brain , 2011, NeuroImage.

[2]  Jan Sijbers,et al.  Affine Coregistration of Diffusion Tensor Magnetic Resonance Images Using Mutual Information , 2005, ACIVS.

[3]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.

[4]  Peter Boesiger,et al.  BootGraph: Probabilistic fiber tractography using bootstrap algorithms and graph theory , 2013, NeuroImage.

[5]  Hayit Greenspan,et al.  Piecewise smooth affine registration of point-sets with application to DT-MRI brain fiber-data , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[6]  Dinggang Shen,et al.  Uncertainty Estimation in Diffusion MRI Using the Nonlocal Bootstrap , 2014, IEEE Transactions on Medical Imaging.

[7]  Stephen M. Smith,et al.  Crossing fibres in tract-based spatial statistics , 2010, NeuroImage.

[8]  James C. Gee,et al.  A diffusion tensor brain template for Rhesus Macaques , 2012, NeuroImage.

[9]  Carl-Fredrik Westin,et al.  Spatial normalization of diffusion tensor MRI using multiple channels , 2003, NeuroImage.

[10]  Michael I. Miller,et al.  Large deformation diffeomorphic metric mapping of vector fields , 2005, IEEE Transactions on Medical Imaging.

[11]  Xu-Feng Yao,et al.  Deformable Registration for Geometric Distortion Correction of Diffusion Tensor Imaging , 2011, CAIP.

[12]  Paul M. Thompson,et al.  Fluid Registration of Diffusion Tensor Images Using Information Theory , 2008, IEEE Transactions on Medical Imaging.

[13]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[14]  M. Jenkinson Non-linear registration aka Spatial normalisation , 2007 .

[15]  Hayit Greenspan,et al.  Direct Registration of White Matter Tractographies with Application to Atlas Construction , 2007 .

[16]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[17]  Paul A. Yushkevich,et al.  Deformable registration of diffusion tensor MR images with explicit orientation optimization , 2006, Medical Image Anal..

[18]  Jan Sijbers,et al.  Nonrigid Coregistration of Diffusion Tensor Images Using a Viscous Fluid Model and Mutual Information , 2007, IEEE Transactions on Medical Imaging.

[19]  Haiying Liu,et al.  A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations , 2001, MICCAI.

[20]  Hayit Greenspan,et al.  Co-registration of White Matter Tractographies by Adaptive-Mean-Shift and Gaussian Mixture Modeling , 2010, IEEE Transactions on Medical Imaging.

[21]  Carl-Fredrik Westin,et al.  A Bayesian approach for stochastic white matter tractography , 2006, IEEE Transactions on Medical Imaging.

[22]  Brandon Whitcher,et al.  Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging , 2008, Human brain mapping.

[23]  Changbao Wu,et al.  Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[24]  Derek K. Jones Tractography Gone Wild: Probabilistic Fibre Tracking Using the Wild Bootstrap With Diffusion Tensor MRI , 2008, IEEE Transactions on Medical Imaging.

[25]  Yi Wang,et al.  Evaluation on diffusion tensor image registration algorithms , 2016, Multimedia Tools and Applications.

[26]  Dinggang Shen,et al.  Diffusion Tensor Image Registration with Combined Tract and Tensor Features , 2011, MICCAI.

[27]  Jing Hua,et al.  Quantitative analysis of diffusion tensor images across subjects using probabilistic tractography , 2008, 2008 15th IEEE International Conference on Image Processing.

[28]  Dinggang Shen,et al.  F-TIMER: Fast Tensor Image Morphing for Elastic Registration , 2010, IEEE Transactions on Medical Imaging.

[29]  James C. Gee,et al.  Elastic Matching of Diffusion Tensor Images , 2000, Comput. Vis. Image Underst..

[30]  Joachim Weickert,et al.  Curvature-Driven PDE Methods for Matrix-Valued Images , 2006, International Journal of Computer Vision.

[31]  Xavier Pennec,et al.  Log-Domain Diffeomorphic Registration of Diffusion Tensor Images , 2010, WBIR.

[32]  Emile A. Hendriks,et al.  Confidence Estimation for Medical Image Registration Based On Stereo Confidences , 2016, IEEE Transactions on Medical Imaging.

[33]  C. F. Wu JACKKNIFE , BOOTSTRAP AND OTHER RESAMPLING METHODS IN REGRESSION ANALYSIS ' BY , 2008 .

[34]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[35]  Yanning Zhang,et al.  Brain MRI image segmentation based on learning local variational Gaussian mixture models , 2016, Neurocomputing.

[36]  Min Qi,et al.  Advance in Diffusion Tensor Image Registration and Its Evaluation , 2016 .

[37]  Christos Davatzikos,et al.  DTI‐DROID: Diffusion tensor imaging‐deformable registration using orientation and intensity descriptors , 2010, Int. J. Imaging Syst. Technol..

[38]  N. Ayache,et al.  Log‐Euclidean metrics for fast and simple calculus on diffusion tensors , 2006, Magnetic resonance in medicine.

[39]  Olivier Clatz,et al.  DT-REFinD: Diffusion Tensor Registration With Exact Finite-Strain Differential , 2009, IEEE Transactions on Medical Imaging.

[40]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[41]  Lin Gan,et al.  Efficient nonlinear DTI registration using DCT basis functions , 2011, CVPR 2011 WORKSHOPS.

[42]  Dinggang Shen,et al.  TIMER: Tensor Image Morphing for Elastic Registration , 2009, NeuroImage.

[43]  Nicholas Ayache,et al.  Non-linear 2D and 3D Registration Using Block-Matching and B-Splines , 2005, Bildverarbeitung für die Medizin.

[44]  P. Sundgren,et al.  Diffusion tensor imaging of the brain: review of clinical applications , 2004, Neuroradiology.

[45]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[46]  Nicholas Ayache,et al.  Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach , 2008, MICCAI.