Why we sleep: the evolutionary pathway to the mammalian sleep

The cause of sleep is a complex question, which needs first, a clear distinction amongst the different meanings of a causal relationship in the study of a given behavior, second, the requisites to be met by a suggested cause, and third, a precise definition of sleep to distinguish behavioral from polygraphic sleep. This review aims at clarifying the meaning of the question and at showing the phylogenetic origin of the mammalian and avian sleep. The phylogenetic appearance of sleep can be approached through a study of the evolution of the vertebrate brain. This began as an undifferentiated dorsal nerve, which was followed by the development of an anterior simplified brain and ended with the formation of the multilayered mammalian neocortex or the avian neostriate. The successive stages in the differentiation of the vertebrate brain produced, at least, two different waking types. The oldest one is the diurnal activity, bound to the light phase of the circadian cycle. Poikilotherms control the waking from the whole brainstem, where their main sensorymotor areas lie. Mammals developed the thalamocortical lines, which displaced the waking up to the cortex after acquiring homeothermy and nocturnal lifestyle. In order to avoid competence between duplicate systems, the early waking type, controlled from the brainstem, was suppressed, and by necessity was turned into inactivity, probably slow wave sleep. On the other hand, the nocturnal rest of poikilotherms most probably resulted in rapid eye movement sleep. The complex structure of the mammalian sleep should thus be considered an evolutionary remnant; the true acquisition of mammals is the cortical waking and not the sleep.

[1]  A. W. Crompton,et al.  Evolution of homeothermy in mammals , 1978, Nature.

[2]  S. E. Huggins,et al.  An electroencephalographic study of sleep in young caimans in a colony , 1978 .

[3]  P. Laming Electroencephalographic studies on arousal in the goldfish (Carassius auratus). , 1980, Journal of comparative and physiological psychology.

[4]  Sleep and wakefulness in chelonian reptiles. II. The red-footed tortoise, Geochelone carbonaria. , 1974, Archives italiennes de biologie.

[5]  M. Jouvet,et al.  [Research on the neural structures and responsible mechanisms in different phases of physiological sleep]. , 1962, Archives italiennes de biologie.

[6]  R. Rial,et al.  Reptilian waking EEG: slow waves, spindles and evoked potentials. , 1994, Electroencephalography and clinical neurophysiology.

[7]  John Zachary Young,et al.  The Life of Vertebrates , 1951 .

[8]  H. Piéron,et al.  Le problème physiologique du sommeil , 1913 .

[9]  A. Rechtschaffen,et al.  The effect of amphetamine, nembutal, alpha-methyl-tyrosine, and parachlorophenylalanine on the sleep-related spike activity of the tortoise, Geochelone carbonaria, and on the cat ventral hippocampus spike. , 1982, Brain, behavior and evolution.

[10]  I. Karmanova Evolution of sleep : stages of the formation of the 'wakefulness-sleep' cycle in vertebrates , 1982 .

[11]  J. Schadé,et al.  Electroencephalographic Patterns of the Goldfish (Carassius Auratus L.) , 1959 .

[12]  J. Pettigrew,et al.  The Echidna Tachyglossus aculeatus Combines REM and Non-REM Aspects in a Single Sleep State: Implications for the Evolution of Sleep , 1996, The Journal of Neuroscience.

[13]  David Wheatley,et al.  Psychopharmacology of Sleep , 1981 .

[14]  R. Berger,et al.  The echidna manifests typical characteristics of rapid eye movement sleep , 2000, Neuroscience Letters.

[15]  R. Lansing,et al.  Electroencephalographic studies of reptiles. , 1962, The Journal of experimental zoology.

[16]  R. Rial,et al.  Stereotaxic atlas for the lizard gallotia galloti , 1990, Progress in Neurobiology.

[17]  T H Bullock,et al.  Electrocorticograms of hippocampal and dorsal cortex of two reptiles: comparison with possible mammalian homologs. , 1991, Brain, behavior and evolution.

[18]  J. T. Corwin,et al.  The auditory brain stem response in five vertebrate classes. , 1982, Electroencephalography and clinical neurophysiology.

[19]  J. Hobson,et al.  Electrographic Correlates of Behaviour in Tree Frogs , 1968, Nature.

[20]  A. Reiner,et al.  The distribution of cholinergic neurons in the central nervous system of turtles. , 1993, Brain, behavior and evolution.

[21]  L. Johnson,et al.  Evoked K-complexes and cardiovascular responses to spindle-synchronous and spindle-asynchronous stimulus clicks during NREM sleep. , 1978, Electroencephalography and clinical neurophysiology.

[22]  M. Kimura,et al.  The neutral theory of molecular evolution. , 1983, Scientific American.

[23]  H. Roffwarg,et al.  Ontogenetic development of the human sleep-dream cycle. , 1966, Science.

[24]  G. Rosadini,et al.  Relationship of sleep interictal epileptiform discharges to sigma activity (12–16 Hz) in benign epilepsy of childhood with rolandic spikes , 1999, Clinical Neurophysiology.

[25]  M. Steriade,et al.  Spontaneous and artificial activation of neocortical seizures. , 1999, Journal of neurophysiology.

[26]  E. T. Segura,et al.  Electroencephalographic studies in toads. , 1966, Electroencephalography and clinical neurophysiology.

[27]  M. Deschenes,et al.  The deafferented reticular thalamic nucleus generates spindle rhythmicity. , 1987, Journal of neurophysiology.

[28]  J. Walker,et al.  Sleep as an adaptation for energy conservation functionally related to hibernation and shallow torpor. , 1980, Progress in brain research.

[29]  H. Roffwarg,et al.  Eye Movements and Electroencephalogram Activity during Sleep in Diurnal Lizards , 1966, Nature.

[30]  S. Huitrón-Reséndiz,et al.  Sleep patterns in the lizard Ctenosaura pectinata , 1991, Physiology & Behavior.

[31]  J. L. Kavanau,et al.  Origin and Evolution of Sleep: Roles of Vision and Endothermy , 1997, Brain Research Bulletin.

[32]  M. Steriade,et al.  Control of unitary activities in cerebellothalamic pathway during wakefulness and synchronized sleep. , 1971, Journal of neurophysiology.

[33]  K. M. Spyer,et al.  Central regulation of autonomic functions , 1990 .

[34]  Florin Amzica,et al.  The K-complex: Its slow (<1-Hz) rhythmicity and relation to delta waves , 1997, Neurology.

[35]  W. Smeets,et al.  Distribution of choline acetyltransferase immunoreactivity in the brain of the lizard Gallotia galloti , 1993, The Journal of comparative neurology.

[36]  W. Dement,et al.  EEG spindle activity as a function of age: Relationship to sleep continuity , 1985, Brain Research.

[37]  A. Coenen Neuronal activities underlying the electroencephalogram and evoked potentials of sleeping and waking: Implications for information processing , 1995, Neuroscience & Biobehavioral Reviews.

[38]  T. Allison,et al.  Electrophysiological studies of the echidna, Tachyglossus aculeatus. I. Waking and sleep. , 1972, Archives italiennes de biologie.

[39]  J. Pettigrew,et al.  Monotremes and the evolution of rapid eye movement sleep. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[40]  J. Conway,et al.  Brief Paradoxical Sleep Deprivation Impairs Reference, but Not Working, Memory in the Radial Arm Maze Task , 1998, Neurobiology of Learning and Memory.

[41]  T. Dobzhansky Nothing in Biology Makes Sense Except in the Light of Evolution , 1973 .

[42]  F. Ayala-Guerrero,et al.  Sleep patterns in a chelonian reptile (Gopherus flavomarginatus) , 1988, Physiology & Behavior.

[43]  T Allison,et al.  Sleep in mammals: ecological and constitutional correlates. , 1976, Science.

[44]  G. Whittow,et al.  Comparative physiology of thermoregulation , 1970 .

[45]  Z. Servít,et al.  Thalamocortical relations and the genesis of epileptic electrographic phenomena in the forebrain of the turtle. , 1972, Experimental neurology.

[46]  R. I. Gamow,et al.  Temperature effects on spontaneous and evoked neural activity in the garter snake. , 1971, Experimental neurology.

[47]  P. Halász,et al.  Late component variants of single auditory evoked responses during NREM sleep stage 2 in man. , 1986, Electroencephalography and clinical neurophysiology.

[48]  J. Hobson Electrographic correlates of behavior in the frog with special reference to sleep. , 1967, Electroencephalography and clinical neurophysiology.

[49]  S. Gould,et al.  The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[50]  Scott S. Campbell,et al.  Animal sleep: A review of sleep duration across phylogeny , 1984, Neuroscience & Biobehavioral Reviews.

[51]  P. S. Enger The electroencephalogram of the codfish (Gadus callarias); spontaneous electrical activity and reaction to photic and acoustic stimulation. , 1957, Acta physiologica Scandinavica.

[52]  N. Dieringer,et al.  42 – Strategies for Simultaneous Image Stabilization and Gaze Orientation in Different Vertebrates , 1994 .

[53]  W. Hodos,et al.  The concept of homology and the evolution of the nervous system. , 1970, Brain, behavior and evolution.

[54]  J. Young,et al.  Electrical activity of the central nervous system of the frog , 1937 .

[55]  T. Bullock,et al.  Comparison of ongoing compound field potentials in the brains of invertebrates and vertebrates , 1988, Brain Research Reviews.

[56]  F. Morrell,et al.  Kindling in the frog: development of spontaneous epileptiform activity. , 1976, Electroencephalography and clinical neurophysiology.

[57]  Dennis McGinty,et al.  Keeping cool: a hypothesis about the mechanisms and functions of slow-wave sleep , 1990, Trends in Neurosciences.

[58]  L. Mukhametov Sleep in Marine Mammals , 1984 .

[59]  Ernst Fernando Lopes Da Silva Niedermeyer,et al.  Electroencephalography, basic principles, clinical applications, and related fields , 1982 .

[60]  V. Susić Electrographic and behavioural correlations of the rest-activity cycle in the sea turtle, Caretta caretta L. (Chelonia) , 1972 .

[61]  S. E. Huggins,et al.  A Study of Spontaneous Electrical Activity in the Brain of Caiman sclerops. ∗ , 1965, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[62]  M. Kryger,et al.  Principles and Practice of Sleep Medicine , 1989 .

[63]  J. Siegel,et al.  SLEEP IN MONOTREMES; IMPLICATIONS FOR THE EVOLUTION OF REM SLEEP , 1997 .

[64]  G. Buzsáki Hippocampal sharp waves: Their origin and significance , 1986, Brain Research.

[65]  早石 修,et al.  Sleep and sleep disorders : from molecule to behavior , 1997 .

[66]  A Yamadori,et al.  Role of the spindles in the onset of sleep. , 1971, The Kobe journal of medical sciences.

[67]  M. Aldrich,et al.  Interictal Spiking Increases with Sleep Depth in Temporal Lobe Epilepsy , 1998, Epilepsia.

[68]  J. Delgado-García,et al.  Information processing underlying gaze control , 1994 .

[69]  K. Adam,et al.  Sleep as a restorative process and a theory to explain why. , 1980, Progress in brain research.

[70]  M. Steriade,et al.  Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  Induction of visual imagery during NREM sleep. , 1997, Sleep.

[72]  R. Drucker-Colín,et al.  Endogenous and exogenous factors on sleep–wake cycle regulation , 1999, Progress in Neurobiology.

[73]  A. Rechtschaffen,et al.  Mammalian Sleep, Longevity, and Energy Metabolism; pp. 425–446 , 1974 .

[74]  D. Dennett Darwin's Dangerous Idea , 1995 .

[75]  N. Weinberger,et al.  An Electroencephalographic Study of Necturus maculosus (Mud Puppy) , 1969, Physiological Zoology.

[76]  T. Cade OBSERVATIONS ON TORPIDITY IN CAPTIVE CHIPMUNKS OF THE GENUS EUTAMIAS , 1963 .

[77]  J. Siegel Phylogeny and the function of REM sleep , 1995, Behavioural Brain Research.

[78]  E.L.J.M. van Luijtelaar,et al.  Spike-wave discharges and sleep spindles in rats. , 1997, Acta neurobiologiae experimentalis.

[79]  R. Berger,et al.  Energy conservation and sleep , 1995, Behavioural Brain Research.

[80]  I. Tobler,et al.  Evolution of the Sleep Process: A Phylogenetic Approach , 1984 .

[81]  Carl Gans,et al.  Biology of the Reptilia , 1969 .

[82]  P. L. Parmeggiani,et al.  Sleep and environmental temperature. , 1970, Archives italiennes de biologie.

[83]  J. Pettigrew,et al.  Sleep in the platypus , 1999, Neuroscience.

[84]  C. Shapiro,et al.  Sleep in a schooling fish, Tilapia mossambica , 1976, Physiology & Behavior.

[85]  S. Brailowsky,et al.  [Experimental models of epilepsy]. , 1992, Gaceta medica de Mexico.

[86]  G. Williams Adaptation and Natural Selection. (Book Reviews: Adaptation and Natural Selection: A Critique of Some Current Evolutionary Thought) , 2018 .

[87]  J. Hudson TORPIDITY IN MAMMALS , 1973 .

[88]  W. F. Flanigan,et al.  The EEG and behavioral continuum of the crocodilian, Caiman sclerops. , 1973, Electroencephalography and clinical neurophysiology.

[89]  R. Drucker-Colín,et al.  The function of sleep is to regulate brain excitability in order to satisfy the requirements imposed by waking , 1995, Behavioural Brain Research.

[90]  R. Rial,et al.  Kindling Effect in the Reptilian Brain: Motor and Electrographic Manifestations , 1978, Epilepsia.

[91]  C. Darwin The Origin of Species by Means of Natural Selection, Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[92]  S. E. Huggins,et al.  Effects of Temperature on Electroencephalogram of the Caiman.∗ , 1965, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[93]  James A. Horne,et al.  Why We Sleep: The Functions of Sleep in Humans and Other Mammals , 1989 .

[94]  H. Roffwarg,et al.  A functional role for REM sleep in brain maturation , 1995, Behavioural Brain Research.

[95]  N. Kleitman,et al.  SLEEP AND WAKEFULNESS , 1940 .

[96]  R. Szymusiak,et al.  Maximal REM sleep time defines a narrower thermoneutral zone than does minimal metabolic rate , 1981, Physiology & Behavior.

[97]  J. Walker,et al.  A polygraphic study of the tortoise (Testudo denticulata). Absence of electrophysiological signs of sleep. , 1973, Brain, behavior and evolution.

[98]  J. Rojas-Ramírez,et al.  Electrophysiological and behavioral correlates of wakefulness and sleep in the lizard, Ctenosaura pectinata. , 1968, Electroencephalography and clinical neurophysiology.

[99]  R. Rial,et al.  On the evolution of waking and sleeping. , 1993, Comparative biochemistry and physiology. Comparative physiology.

[100]  Mitsumoto Sato,et al.  Kindling: Secondary Epileptogenesis, Sleep and Catecholamines , 1975, Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques.

[101]  W. F. Flanigan,et al.  Sleep and wakefulness in chelonian reptiles. I. The box turtle, Terrapene carolina. , 1974, Archives Italiennes de Biologie.

[102]  S. E. Huggins,et al.  Sleep in a crocodilian, Caiman sclerops , 1979 .

[103]  B. Rose Factors Affecting Activity in Sceloporus Virgatus , 1981 .

[104]  W. R. Goff,et al.  Sleep in a primitive mammal, the spiny anteater. , 1968 .

[105]  M. Steriade,et al.  Brainstem Control of Wakefulness and Sleep , 1990, Springer US.