Soft Maps Between Surfaces

The problem of mapping between two non‐isometric surfaces admits ambiguities on both local and global scales. For instance, symmetries can make it possible for multiple maps to be equally acceptable, and stretching, slippage, and compression introduce difficulties deciding exactly where each point should go. Since most algorithms for point‐to‐point or even sparse mapping struggle to resolve these ambiguities, in this paper we introduce soft maps, a probabilistic relaxation of point‐to‐point correspondence that explicitly incorporates ambiguities in the mapping process. In addition to explaining a continuous theory of soft maps, we show how they can be represented using probability matrices and computed for given pairs of surfaces through a convex optimization explicitly trading off between continuity, conformity to geometric descriptors, and spread. Given that our correspondences are encoded in matrix form, we also illustrate how low‐rank approximation and other linear algebraic tools can be used to analyze, simplify, and represent both individual and collections of soft maps.

[1]  Mauro Dell'Amico,et al.  8. Quadratic Assignment Problems: Algorithms , 2009 .

[2]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[3]  Michael Werman,et al.  Fast and robust Earth Mover's Distances , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[4]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  D. Lucas,et al.  Probabilistic tracking in a multitarget environment , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[6]  Leonidas J. Guibas,et al.  Discovery of Intrinsic Primitives on Triangle Meshes , 2011, Comput. Graph. Forum.

[7]  Alexander M. Bronstein,et al.  Full and Partial Symmetries of Non-rigid Shapes , 2010, International Journal of Computer Vision.

[8]  Facundo Mémoli,et al.  Spectral Gromov-Wasserstein distances for shape matching , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[9]  Amnon Shashua,et al.  Probabilistic graph and hypergraph matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Jitendra Malik,et al.  Shape matching and object recognition using low distortion correspondences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[11]  Ghassan Hamarneh,et al.  A Survey on Shape Correspondence , 2011, Comput. Graph. Forum.

[12]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[13]  Leonidas J. Guibas,et al.  One Point Isometric Matching with the Heat Kernel , 2010, Comput. Graph. Forum.

[14]  C. Villani Topics in Optimal Transportation , 2003 .

[15]  Sebastian Thrun,et al.  The Correlated Correspondence Algorithm for Unsupervised Registration of Nonrigid Surfaces , 2004, NIPS.

[16]  Vladimir G. Kim,et al.  Möbius Transformations For Global Intrinsic Symmetry Analysis , 2010, Comput. Graph. Forum.

[17]  Maks Ovsjanikov,et al.  Functional maps , 2012, ACM Trans. Graph..

[18]  F. Mémoli,et al.  Geometric Surface and Brain Warping via Geodesic Minimizing Lipschitz Extensions ? , 2006 .

[19]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[20]  F. Mémoli,et al.  A spectral notion of Gromov–Wasserstein distance and related methods , 2011 .

[21]  Vladimir G. Kim,et al.  Blended intrinsic maps , 2011, ACM Trans. Graph..

[22]  Daniel Cremers,et al.  Large‐Scale Integer Linear Programming for Orientation Preserving 3D Shape Matching , 2011, Comput. Graph. Forum.

[23]  Daniel Cremers,et al.  The wave kernel signature: A quantum mechanical approach to shape analysis , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[24]  I. Daubechies,et al.  Conformal Wasserstein distances: Comparing surfaces in polynomial time , 2011, 1103.4408.

[25]  Hans-Peter Seidel,et al.  Intrinsic Shape Matching by Planned Landmark Sampling , 2011, Comput. Graph. Forum.

[26]  Eranda C Ela,et al.  Assignment Problems , 1964, Comput. J..

[27]  Yoshitsugu Yamamoto,et al.  Metric-Preserving Reduction of Earth Mover's Distance , 2009, Asia Pac. J. Oper. Res..

[28]  Leonidas J. Guibas,et al.  Global Intrinsic Symmetries of Shapes , 2008, Comput. Graph. Forum.

[29]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[30]  Rasmus Larsen,et al.  Shape Analysis Using the Auto Diffusion Function , 2009 .

[31]  C. Berge Fractional Graph Theory , 1978 .

[32]  Anand Rangarajan,et al.  The Softassign Procrustes Matching Algorithm , 1997, IPMI.

[33]  Szymon Rusinkiewicz,et al.  Computing Correspondences in Geometric Data Sets , 2011, Eurographics.

[34]  Facundo Mémoli,et al.  Eurographics Symposium on Point-based Graphics (2007) on the Use of Gromov-hausdorff Distances for Shape Comparison , 2022 .

[35]  Leonidas J. Guibas,et al.  An Optimization Approach to Improving Collections of Shape Maps , 2011, Comput. Graph. Forum.

[36]  Thomas A. Funkhouser,et al.  Möbius voting for surface correspondence , 2009, ACM Trans. Graph..