Global Stability in Some Seir Epidemic Models

The dynamics of many epidemic models for infectious diseases that spread in a single host population demonstrate a threshold phenomenon. If the basic reproduction number R0 is below unity, the disease-free equilibrium P0 is globally stable in the feasible region and the disease always dies out. If R0 > 1, a unique endemic equilibrium P* is globally asymptotically stable in the interior of the feasible region and the disease will persist at the endemic equilibrium if it is initially present. In this paper, this threshold phenomenon is established for two epidemic models of SEIR type using two recent approaches to the global-stability problem.

[1]  Hal L. Smith Periodic orbits of competitive and cooperative systems , 1986 .

[2]  Herbert W. Hethcote,et al.  Dynamic models of infectious diseases as regulators of population sizes , 1992, Journal of mathematical biology.

[3]  M. Li,et al.  Global dynamics of a SEIR model with varying total population size. , 1999, Mathematical Biosciences.

[4]  G. Leonov,et al.  Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications , 1996 .

[5]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[6]  Paul Waltman,et al.  A brief survey of persistence in dynamical systems , 1991 .

[7]  R. A. Smith,et al.  Some applications of Hausdorff dimension inequalities for ordinary differential equations , 1986, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[8]  K. L. Cooke,et al.  Analysis of an SEIRS epidemic model with two delays , 1996, Journal of mathematical biology.

[9]  Lourdes Esteva,et al.  A model for dengue disease with variable human population , 1999, Journal of mathematical biology.

[10]  Michael Y. Li,et al.  Global stability for the SEIR model in epidemiology. , 1995, Mathematical biosciences.

[11]  James S. Muldowney,et al.  A Geometric Approach to Global-Stability Problems , 1996 .

[12]  S. Busenberg,et al.  Analysis of a disease transmission model in a population with varying size , 1990, Journal of mathematical biology.

[13]  S. Busenberg,et al.  Delay differential equations and dynamical systems , 1991 .

[14]  Michael Y. Li Dulac criteria for autonomous systems having an invariant affine manifold , 1996 .

[15]  Roy M. Anderson,et al.  REGULATION AND STABILITY OF HOST-PARASITE POPULATION INTERACTIONS , 1978 .

[16]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[17]  K. Cooke,et al.  Vertically transmitted diseases , 1993 .

[18]  James S. Muldowney,et al.  Compound matrices and ordinary differential equations , 1990 .

[19]  C. Pugh An Improved Closing Lemma and a General Density Theorem , 1967 .

[20]  F. Brauer,et al.  Models for the spread of universally fatal diseases , 1990, Journal of mathematical biology.

[21]  Charles Pugh,et al.  The C1 Closing Lemma, including Hamiltonians , 1983, Ergodic Theory and Dynamical Systems.

[22]  Paul Waltman,et al.  Uniformly persistent systems , 1986 .

[23]  S. Levin,et al.  Dynamical behavior of epidemiological models with nonlinear incidence rates , 1987, Journal of mathematical biology.

[24]  Michael Y. Li,et al.  A Criterion for Stability of Matrices , 1998 .

[25]  Robert H. Martin Logarithmic norms and projections applied to linear differential systems , 1974 .

[26]  Stavros Busenberg,et al.  A Method for Proving the Non-existence of Limit Cycles , 1993 .

[27]  Morris W. Hirsch,et al.  Systems of differential equations that are competitive or cooperative. VI: A local Cr Closing Lemma for 3-dimensional systems , 1991 .

[28]  Louis J. Gross,et al.  Applied Mathematical Ecology , 1990 .

[29]  David Greenhalgh,et al.  Hopf bifurcation in epidemic models with a latent period and nonpermanent immunity , 1997 .

[30]  R. May,et al.  Population biology of infectious diseases: Part II , 1979, Nature.

[31]  Horst R. Thieme,et al.  Global stability in cyclic epidemic models with disease fatalities , 1998 .

[32]  S. Levin,et al.  Periodicity in Epidemiological Models , 1989 .

[33]  J. P. Lasalle The stability of dynamical systems , 1976 .

[34]  H. Hethcote,et al.  Some epidemiological models with nonlinear incidence , 1991, Journal of mathematical biology.

[35]  H. Hethcote PERIODICITY AND STABILITY IN EPIDEMIC MODELS: A SURVEY , 1981 .

[36]  H R Thieme,et al.  Epidemic and demographic interaction in the spread of potentially fatal diseases in growing populations. , 1992, Mathematical biosciences.

[37]  James S. Muldowney,et al.  On R.A. Smith's Autonomous Convergence Theorem , 1995 .

[38]  Paul Waltman,et al.  Persistence in dynamical systems , 1986 .

[39]  Liancheng Wang,et al.  Global Dynamics of an SEIR Epidemic Model with Vertical Transmission , 2001, SIAM J. Appl. Math..

[40]  F. V. Vleck,et al.  Stability and Asymptotic Behavior of Differential Equations , 1965 .

[41]  R. May,et al.  Regulation and Stability of Host-Parasite Population Interactions: I. Regulatory Processes , 1978 .

[42]  Gail S. K. Wolkowicz,et al.  Differential Equations with Applications to Biology , 1998 .