The automorphism group of Hall’s universal group

We study the automorphism group of Hall's universal locally finite group $H$. We show that in $Aut(H)$ every subgroup of index $< 2^\omega$ lies between the pointwise and the setwise stabilizer of a unique finite subgroup $A$ of $H$, and use this to prove that $Aut(H)$ is complete. We further show that $Inn(H)$ is the largest locally finite normal subgroup of $Aut(H)$. Finally, we observe that from the work of [Sh:312] it follows that for every countable locally finite $G$ there exists $G \cong G' \leq H$ such that every $f \in Aut(G')$ extends to an $\hat{f} \in Aut(H)$ in such a way that $f \mapsto \hat{f}$ embeds $Aut(G')$ into $Aut(H)$. In particular, we solve the three open questions of Hickin on $Aut(H)$ from [3], and give a partial answer to Question VI.5 of Kegel and Wehrfritz from [6].

[1]  B. H. Neumann,et al.  Permutational products of groups , 1960, Journal of the Australian Mathematical Society.

[2]  Ken Hickin,et al.  Complete universal locally finite groups , 1978 .

[3]  Saharon Shelah,et al.  The Small Index Property for ω‐Stable (ω‐Categorical Structures and for the Random Graph , 1993 .

[4]  P. Hall,et al.  Some Constructions for Locally Finite Groups , 1959 .

[5]  E. Formanek,et al.  The Automorphism Group of a Free Group is Complete , 1975 .

[6]  Katrin Tent,et al.  On the isometry group of the Urysohn space , 2013, J. Lond. Math. Soc..

[7]  S. Shelah,et al.  Uncountable universal locally finite groups , 1976 .

[8]  Isabel Müller,et al.  Fra\"iss\'e Structures with Universal Automorphism Groups , 2015 .

[9]  Existentially closed locally finite groups , 2011, 1102.5578.

[10]  Dugald Macpherson,et al.  A survey of homogeneous structures , 2011, Discret. Math..

[11]  B. Neumann,et al.  An essay on free products of groups with amalgamations , 1954, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[12]  B. A. F. Wehrfritz,et al.  Locally finite groups , 1973 .

[13]  A. Kechris,et al.  Turbulence, amalgamation, and generic automorphisms of homogeneous structures , 2004, math/0409567.

[14]  M. E. Gomez,et al.  Extrapolation Spaces and Almost‐Everywhere Convergence of Singular Integrals , 1986 .

[16]  Katrin Tent,et al.  Simplicity of some automorphism groups , 2011 .