From Brouwer theory to the study of homeomorphisms of surfaces
暂无分享,去创建一个
[1] Sol Schwartzman,et al. Asymptotic cycles , 2008, Scholarpedia.
[2] L. Guillou. Free lines for homeomorphisms of the open annulus , 2006, math/0603213.
[3] Zhihong Xia. Area-Preserving Surface Diffeomorphisms , 2005, math/0503223.
[4] P. Calvez. Multivalued Lyapunov functions for homeomorphisms of the 2-torus , 2006 .
[5] S. Crovisier,et al. Pseudo-rotations of the open annulus , 2005, math/0506041.
[6] B. Fayad,et al. Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary , 2005, math/0502067.
[7] F. Roux. Structure des homeomorphismes de Brouwer , 2004, math/0403406.
[8] P. Le Calvez. Une version feuilletée équivariante du théorème de translation de Brouwer , 2005 .
[9] A. Katok,et al. Constructions in elliptic dynamics , 2004, Ergodic Theory and Dynamical Systems.
[10] J. Franks,et al. Distortion elements in group actions on surfaces , 2004, math/0404532.
[11] P. Calvez. Une version feuilletée du théorème de translation de Brouwer , 2004 .
[12] F. Roux. Homéomorphismes de surfaces théorèmes de la fleur de leau-fatou et de la variété stable , 2004 .
[13] M. Bonino. A Brouwer-like theorem for orientation reversing homeomorphisms of the sphere , 2004 .
[14] S. Crovisier,et al. Pseudo-rotations of the closed annulus: variation on a theorem of J Kwapisz , 2003, math/0309477.
[15] J. Kwapisz. Combinatorics of torus diffeomorphisms , 2003, Ergodic Theory and Dynamical Systems.
[16] J. Franks,et al. Periodic points of Hamiltonian surface diffeomorphisms , 2003, math/0303296.
[17] J. Franks,et al. Area preserving group actions on surfaces , 2002, math/0203159.
[18] J. Franks,et al. Regions of instability for non-twist maps , 1999, Ergodic Theory and Dynamical Systems.
[19] F. Roux,et al. Ensemble oscillant d’un homéomorphisme de Brouwer, homéomorphismes de Reeb , 2003 .
[20] M. Sodin,et al. A growth gap for diffeomorphisms of the interval , 2002, math/0203066.
[21] L. Polterovich. Growth of maps, distortion in groups and symplectic geometry , 2001, math/0111050.
[22] F. Roux. Etude topologique de l'espace des homéomorphismes de Brouwer, II , 2001 .
[23] P. Calvez. Rotation numbers in the infinite annulus , 2001 .
[24] S. Matsumoto. Arnold conjecture for surface homeomorphisms , 2000 .
[25] M. Bonino. Propriétés locales de l'espace des homéomorphismes de Brouwer , 1999, Ergodic Theory and Dynamical Systems.
[26] K. Ôno,et al. ARNOLD CONJECTURE AND GROMOV–WITTEN INVARIANT , 1999 .
[27] M. Handel. A FIXED-POINT THEOREM FOR PLANAR HOMEOMORPHISMS , 1999 .
[28] G. Tian,et al. Floer homology and Arnold conjecture , 1998 .
[29] J. Franks. Rotation Vectors and Fixed Points of Area Preserving Surface Diffeomorphisms , 1996 .
[30] J. Franks. Area preserving homeomorphisms of open surfaces of genus zero , 1996 .
[31] Eduard Zehnder,et al. Symplectic Invariants and Hamiltonian Dynamics , 1994 .
[32] L. Guillou. Théoréme de translation plane de brouwer et généralisations du théoréme de Poincaré-Birkhoff , 1994 .
[33] D. Salamon,et al. Morse theory for periodic solutions of hamiltonian systems and the maslov index , 1992 .
[34] J. Franks. A new proof of the Brouwer plane translation theorem , 1992, Ergodic Theory and Dynamical Systems.
[35] M. Flucher. Fixed points of measure preserving torus homeomorphisms , 1990 .
[36] Christophe Golé,et al. Poincaré's proof of Poincaré's last geometric theorem , 1990 .
[37] J. Franks. Recurrence and fixed points of surface homeomorphisms , 1988, Ergodic Theory and Dynamical Systems.
[38] Edward E. Slaminka,et al. An orientation preserving fixed point free homeomorphism of the plane which admits no closed invariant line , 1988 .
[39] John Franks,et al. Generalizations of the Poincaré-Birkhoff Theorem , 1988 .
[40] A. Floer. Proof of the Arnold conjecture for surfaces and generalizations to certain Kähler manifolds , 1986 .
[41] Jean-Claude Sikorav. Points fixes d'une application symplectique homologue à l'identité , 1985 .
[42] C. Conley,et al. The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold , 1983 .
[43] David Fried. The geometry of cross sections to flows , 1982 .
[44] Morton Brown. A short short proof of the Cartwright-Littlewood theorem , 1977 .
[45] R. Nussbaum. Some fixed point theorems , 1971 .
[46] O. H. Hamilton. A Short Proof of the Cartwright-Littlewood Fixed Point Theorem , 1954, Canadian Journal of Mathematics.
[47] G. Birkhoff. An extension of Poincaré's last geometric theorem , 1926 .
[48] George D. Birkhoff,et al. Proof of Poincaré’s geometric theorem , 1913 .
[49] L. Brouwer. Beweis des ebenen Translationssatzes , 1912 .