From Brouwer theory to the study of homeomorphisms of surfaces

We will state an equivariant foliated version of the classical Brouwer PlaneTranslation Theorem and will explain how to apply this result to the study of homeomorphisms of surfaces. In particular we will explain why a diffeomorphism of a closed oriented surface of genus . 1 that is the time-one map of a time dependent Hamiltonian vector field has infinitely many periodic orbits. This gives a positive answer in the case of surfaces to a more general question stated by C. Conley. We will give a survey of some recent results on homeomorphisms and diffeomorphisms of surfaces and will explain the links with the improved version of Brouwer�fs theorem.

[1]  Sol Schwartzman,et al.  Asymptotic cycles , 2008, Scholarpedia.

[2]  L. Guillou Free lines for homeomorphisms of the open annulus , 2006, math/0603213.

[3]  Zhihong Xia Area-Preserving Surface Diffeomorphisms , 2005, math/0503223.

[4]  P. Calvez Multivalued Lyapunov functions for homeomorphisms of the 2-torus , 2006 .

[5]  S. Crovisier,et al.  Pseudo-rotations of the open annulus , 2005, math/0506041.

[6]  B. Fayad,et al.  Weak mixing disc and annulus diffeomorphisms with arbitrary Liouville rotation number on the boundary , 2005, math/0502067.

[7]  F. Roux Structure des homeomorphismes de Brouwer , 2004, math/0403406.

[8]  P. Le Calvez Une version feuilletée équivariante du théorème de translation de Brouwer , 2005 .

[9]  A. Katok,et al.  Constructions in elliptic dynamics , 2004, Ergodic Theory and Dynamical Systems.

[10]  J. Franks,et al.  Distortion elements in group actions on surfaces , 2004, math/0404532.

[11]  P. Calvez Une version feuilletée du théorème de translation de Brouwer , 2004 .

[12]  F. Roux Homéomorphismes de surfaces théorèmes de la fleur de leau-fatou et de la variété stable , 2004 .

[13]  M. Bonino A Brouwer-like theorem for orientation reversing homeomorphisms of the sphere , 2004 .

[14]  S. Crovisier,et al.  Pseudo-rotations of the closed annulus: variation on a theorem of J Kwapisz , 2003, math/0309477.

[15]  J. Kwapisz Combinatorics of torus diffeomorphisms , 2003, Ergodic Theory and Dynamical Systems.

[16]  J. Franks,et al.  Periodic points of Hamiltonian surface diffeomorphisms , 2003, math/0303296.

[17]  J. Franks,et al.  Area preserving group actions on surfaces , 2002, math/0203159.

[18]  J. Franks,et al.  Regions of instability for non-twist maps , 1999, Ergodic Theory and Dynamical Systems.

[19]  F. Roux,et al.  Ensemble oscillant d’un homéomorphisme de Brouwer, homéomorphismes de Reeb , 2003 .

[20]  M. Sodin,et al.  A growth gap for diffeomorphisms of the interval , 2002, math/0203066.

[21]  L. Polterovich Growth of maps, distortion in groups and symplectic geometry , 2001, math/0111050.

[22]  F. Roux Etude topologique de l'espace des homéomorphismes de Brouwer, II , 2001 .

[23]  P. Calvez Rotation numbers in the infinite annulus , 2001 .

[24]  S. Matsumoto Arnold conjecture for surface homeomorphisms , 2000 .

[25]  M. Bonino Propriétés locales de l'espace des homéomorphismes de Brouwer , 1999, Ergodic Theory and Dynamical Systems.

[26]  K. Ôno,et al.  ARNOLD CONJECTURE AND GROMOV–WITTEN INVARIANT , 1999 .

[27]  M. Handel A FIXED-POINT THEOREM FOR PLANAR HOMEOMORPHISMS , 1999 .

[28]  G. Tian,et al.  Floer homology and Arnold conjecture , 1998 .

[29]  J. Franks Rotation Vectors and Fixed Points of Area Preserving Surface Diffeomorphisms , 1996 .

[30]  J. Franks Area preserving homeomorphisms of open surfaces of genus zero , 1996 .

[31]  Eduard Zehnder,et al.  Symplectic Invariants and Hamiltonian Dynamics , 1994 .

[32]  L. Guillou Théoréme de translation plane de brouwer et généralisations du théoréme de Poincaré-Birkhoff , 1994 .

[33]  D. Salamon,et al.  Morse theory for periodic solutions of hamiltonian systems and the maslov index , 1992 .

[34]  J. Franks A new proof of the Brouwer plane translation theorem , 1992, Ergodic Theory and Dynamical Systems.

[35]  M. Flucher Fixed points of measure preserving torus homeomorphisms , 1990 .

[36]  Christophe Golé,et al.  Poincaré's proof of Poincaré's last geometric theorem , 1990 .

[37]  J. Franks Recurrence and fixed points of surface homeomorphisms , 1988, Ergodic Theory and Dynamical Systems.

[38]  Edward E. Slaminka,et al.  An orientation preserving fixed point free homeomorphism of the plane which admits no closed invariant line , 1988 .

[39]  John Franks,et al.  Generalizations of the Poincaré-Birkhoff Theorem , 1988 .

[40]  A. Floer Proof of the Arnold conjecture for surfaces and generalizations to certain Kähler manifolds , 1986 .

[41]  Jean-Claude Sikorav Points fixes d'une application symplectique homologue à l'identité , 1985 .

[42]  C. Conley,et al.  The Birkhoff-Lewis fixed point theorem and a conjecture of V.I. Arnold , 1983 .

[43]  David Fried The geometry of cross sections to flows , 1982 .

[44]  Morton Brown A short short proof of the Cartwright-Littlewood theorem , 1977 .

[45]  R. Nussbaum Some fixed point theorems , 1971 .

[46]  O. H. Hamilton A Short Proof of the Cartwright-Littlewood Fixed Point Theorem , 1954, Canadian Journal of Mathematics.

[47]  G. Birkhoff An extension of Poincaré's last geometric theorem , 1926 .

[48]  George D. Birkhoff,et al.  Proof of Poincaré’s geometric theorem , 1913 .

[49]  L. Brouwer Beweis des ebenen Translationssatzes , 1912 .