A study of the performance of classical minimizers in the Quantum Approximate Optimization Algorithm

Abstract The Quantum Approximate Optimization Algorithm (QAOA) was proposed as a way of finding good, approximate solutions to hard combinatorial optimization problems. QAOA uses a hybrid approach. A parametrized quantum state is repeatedly prepared and measured on a quantum computer to estimate its average energy. Then, a classical optimizer, running in a classical computer, uses such information to decide on the new parameters that are then provided to the quantum computer. This process is iterated until some convergence criteria are met. Theoretically, almost all classical minimizers can be used in the hybrid scheme. However, their behaviour can vary greatly in both the quality of the final solution and the time they take to find it. In this work, we study the performance of twelve different classical optimizers when used with QAOA to solve the maximum cut problem in graphs. We conduct a thorough set of tests on a quantum simulator both, with and without noise, and present results that show that some optimizers can be hundreds of times more efficient than others in some cases.

[1]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[2]  Ruslan Shaydulin,et al.  Evaluating Quantum Approximate Optimization Algorithm: A Case Study , 2019, 2019 Tenth International Green and Sustainable Computing Conference (IGSC).

[3]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[4]  Zsolt Tuza,et al.  Maximum cuts and largest bipartite subgraphs , 1993, Combinatorial Optimization.

[5]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[6]  F. Jin,et al.  Benchmarking the quantum approximate optimization algorithm , 2019, Quantum Inf. Process..

[7]  K. I. M. McKinnon,et al.  Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point , 1998, SIAM J. Optim..

[8]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[9]  José Ranilla,et al.  Quantum walks for the determination of commutativity of finite dimensional algebras , 2019, J. Comput. Appl. Math..

[10]  Michel Deza,et al.  Applications of cut polyhedra—II , 1994 .

[11]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[12]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[13]  D. Bacon,et al.  Quantum approximate optimization of non-planar graph problems on a planar superconducting processor , 2020, Nature Physics.

[14]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[15]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[16]  Rupak Biswas,et al.  Quantum Approximate Optimization with Hard and Soft Constraints , 2017 .

[17]  R. Fletcher Practical Methods of Optimization , 1988 .

[18]  Leo Zhou,et al.  Quantum Approximate Optimization Algorithm: Performance, Mechanism, and Implementation on Near-Term Devices , 2018, Physical Review X.

[19]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[20]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[21]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  K. Scheinberg,et al.  A Theoretical and Empirical Comparison of Gradient Approximations in Derivative-Free Optimization , 2019, Foundations of Computational Mathematics.

[23]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[24]  M. Powell A View of Algorithms for Optimization without Derivatives 1 , 2007 .

[25]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[26]  S. Nash A survey of truncated-Newton methods , 2000 .

[27]  Gavin E. Crooks,et al.  Performance of the Quantum Approximate Optimization Algorithm on the Maximum Cut Problem , 2018, 1811.08419.

[28]  Mahabubul Alam,et al.  Analysis of Quantum Approximate Optimization Algorithm under Realistic Noise in Superconducting Qubits , 2019, ArXiv.

[29]  Keisuke Fujii,et al.  Sequential minimal optimization for quantum-classical hybrid algorithms , 2019, Physical Review Research.

[30]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[31]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[32]  Christian Gogolin,et al.  Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer. , 2020 .

[33]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[34]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[35]  Mikhail Smelyanskiy,et al.  Practical optimization for hybrid quantum-classical algorithms , 2017, 1701.01450.

[36]  Gian Giacomo Guerreschi,et al.  QAOA for Max-Cut requires hundreds of qubits for quantum speed-up , 2018, Scientific Reports.

[37]  Giacomo Nannicini,et al.  Performance of hybrid quantum/classical variational heuristics for combinatorial optimization , 2018, Physical review. E.

[38]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[39]  Léon Bottou,et al.  The Tradeoffs of Large Scale Learning , 2007, NIPS.

[40]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[41]  Martin Leib,et al.  Forbidden subspaces for level-1 quantum approximate optimization algorithm and instantaneous quantum polynomial circuits , 2020 .

[42]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[43]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[44]  Travis S. Humble,et al.  Lower bounds on circuit depth of the quantum approximate optimization algorithm , 2020, Quantum Information Processing.

[45]  M. Suzuki,et al.  Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems , 1976 .

[46]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[47]  Martin Andersson,et al.  Applying the Quantum Approximate Optimization Algorithm to the Tail-Assignment Problem , 2019, Physical Review Applied.