On the differentiability of the solution to an equation with drift and fractional diffusion
暂无分享,去创建一个
[1] F. Nazarov,et al. Variation on a theme of caffarelli and vasseur , 2009, 0908.0923.
[2] Peter Constantin,et al. Global regularity for a modified critical dissipative quasi-geostrophic equation , 2008, 0803.1318.
[3] M. Czubak,et al. Eventual regularization of the slightly supercritical fractional Burgers equation , 2009, 0911.5148.
[4] L. Caffarelli,et al. An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.
[5] L. Silvestre. Holder estimates for advection fractional-diffusion equations , 2010, 1009.5723.
[6] Alexander Kiselev,et al. Nonlocal maximum principles for active scalars , 2010, 1009.0542.
[7] Luis Silvestre,et al. Regularity Results for Nonlocal Equations by Approximation , 2009, 0902.4030.
[8] Enrico Priola,et al. Pathwise uniqueness for singular SDEs driven by stable processes , 2010, 1005.4237.
[9] Heinz Otto Cordes,et al. Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen , 1956 .
[10] L. Nirenberg. VI. On a Generalization of Quasi-Conformal Mappings and its Application to Elliptic Partial Differential Equations , 1955 .
[11] Peter Constantin,et al. Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation , 2008 .
[12] J. Droniou,et al. Fractal First-Order Partial Differential Equations , 2006 .
[13] Carlos E. Kenig,et al. The local regularity of solutions of degenerate elliptic equations , 1982 .
[14] L. Silvestre. On the differentiability of the solution to the Hamilton–Jacobi equation with critical fractional diffusion , 2009, 0911.5147.
[15] L. Caffarelli,et al. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.
[16] Luis Silvestre,et al. Eventual regularization for the slightly supercritical quasi-geostrophic equation , 2008, 0812.4901.