On the differentiability of the solution to an equation with drift and fractional diffusion

We consider an equation with drift and either critical or supercritical fractional diffusion. Under a regularity assumption for the vector field that is marginally stronger than what is required for Holder continuity of the solutions, we prove that the solution becomes immediately differentiable with Holder continuous derivatives. Therefore, the solutions to the equation are classical.

[1]  F. Nazarov,et al.  Variation on a theme of caffarelli and vasseur , 2009, 0908.0923.

[2]  Peter Constantin,et al.  Global regularity for a modified critical dissipative quasi-geostrophic equation , 2008, 0803.1318.

[3]  M. Czubak,et al.  Eventual regularization of the slightly supercritical fractional Burgers equation , 2009, 0911.5148.

[4]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[5]  L. Silvestre Holder estimates for advection fractional-diffusion equations , 2010, 1009.5723.

[6]  Alexander Kiselev,et al.  Nonlocal maximum principles for active scalars , 2010, 1009.0542.

[7]  Luis Silvestre,et al.  Regularity Results for Nonlocal Equations by Approximation , 2009, 0902.4030.

[8]  Enrico Priola,et al.  Pathwise uniqueness for singular SDEs driven by stable processes , 2010, 1005.4237.

[9]  Heinz Otto Cordes,et al.  Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen , 1956 .

[10]  L. Nirenberg VI. On a Generalization of Quasi-Conformal Mappings and its Application to Elliptic Partial Differential Equations , 1955 .

[11]  Peter Constantin,et al.  Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation , 2008 .

[12]  J. Droniou,et al.  Fractal First-Order Partial Differential Equations , 2006 .

[13]  Carlos E. Kenig,et al.  The local regularity of solutions of degenerate elliptic equations , 1982 .

[14]  L. Silvestre On the differentiability of the solution to the Hamilton–Jacobi equation with critical fractional diffusion , 2009, 0911.5147.

[15]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[16]  Luis Silvestre,et al.  Eventual regularization for the slightly supercritical quasi-geostrophic equation , 2008, 0812.4901.