Substitution rules for aperiodic sequences of the cut and project type
暂无分享,去创建一个
[1] J. Lamb,et al. A natural class of generalized Fibonacci chains , 1994 .
[2] A. Janner,et al. The nature of the atomic surfaces of quasiperiodic self-similar structures , 1993 .
[3] R. Zielinski. An aperiodic pseudorandom number generator , 1990 .
[4] J.-P. Allouche,et al. Automata and automatic sequences , 2022, ArXiv.
[5] Jeroen S. W. Lamb,et al. LETTER TO THE EDITOR: On the canonical projection method for one-dimensional quasicrystals and invertible substitution rules , 1998 .
[6] Louis-Sebastien Guimond,et al. Proving the deterministic period breaking of linear congruential generators using two tile quasicrystals , 2002, Math. Comput..
[7] P. A. B. Pleasants,et al. Characterization of two-distance sequences , 1992 .
[8] W. Parry. On theβ-expansions of real numbers , 1960 .
[9] M. Queffélec,et al. Spectral study of automatic and substitutive sequences , 1995 .
[10] Jiri Patera,et al. Quasicrystals and icosians , 1993 .
[11] J. Patera,et al. Inflation centres of the cut and project quasicrystals , 1998 .