The path to ubiquitous and low-cost organic electronic appliances on plastic

Organic electronics are beginning to make significant inroads into the commercial world, and if the field continues to progress at its current, rapid pace, electronics based on organic thin-film materials will soon become a mainstay of our technological existence. Already products based on active thin-film organic devices are in the market place, most notably the displays of several mobile electronic appliances. Yet the future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.

[1]  Katsuyuki Morii,et al.  Inkjet Printing of Light-Emitting Polymer Displays , 2003 .

[2]  Ian D. Parker,et al.  Carrier tunneling and device characteristics in polymer light-emitting diodes , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[3]  Roseanne M. Ford,et al.  Solar Photobiochemistry: Simultaneous Photoproduction of Hydrogen and Oxygen in a Confined Bioreactor , 2001 .

[4]  A. Girlando,et al.  Studies of Organic Semiconductors for 40 Years—V , 1989 .

[5]  Junji Kido,et al.  Organic Electroluminescent Devices Having Self-Doped Cathode Interface Layer , 2002 .

[6]  P. Blom,et al.  Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene) , 1997 .

[7]  Stephen R. Forrest,et al.  Direct, Mask‐ and Solvent‐Free Printing of Molecular Organic Semiconductors , 2004 .

[8]  Chung-Chih Wu,et al.  Ink-jet printing of doped polymers for organic light emitting devices , 1998 .

[9]  Akira J. Ikushima,et al.  Observation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy , 1994 .

[10]  Antoine Kahn,et al.  Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study , 2001 .

[11]  James C. Sturm,et al.  Local tuning of organic light-emitting diode color by dye droplet application , 1998 .

[12]  Ifor D. W. Samuel,et al.  Bright electroluminescence from a new conjugated dendrimer , 2003 .

[13]  A. Heeger,et al.  Visible light emission from semiconducting polymer diodes , 1991 .

[14]  Stephen R. Forrest,et al.  Design of flat-panel displays based on organic light-emitting devices , 1998 .

[15]  Takao Someya,et al.  Nanoscale organic transistors that use source/drain electrodes supported by high resolution rubber stamps , 2003 .

[16]  Aleksandr Isaakovich Kitaĭgorodskiĭ,et al.  Molecular Crystals and Molecules , 1973 .

[17]  Mats Andersson,et al.  Laminated fabrication of polymeric photovoltaic diodes , 1998, Nature.

[18]  Stephen R. Forrest,et al.  Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films , 2003, Nature.

[19]  Stephen Y. Chou,et al.  Lithographically induced self-construction of polymer microstructures for resistless patterning , 1999 .

[20]  Stephen R. Forrest,et al.  Fabrication of Organic Light‐Emitting Devices by Low‐Pressure Cold Welding , 2003 .

[21]  Z. Popović,et al.  DEGRADATION PROCESSES AT THE CATHODE/ORGANIC INTERFACE IN ORGANIC LIGHT EMITTING DEVICES WITH MG:AG CATHODES , 1998 .

[22]  S. Forrest,et al.  Reliability and degradation of organic light emitting devices , 1994 .

[23]  Stephen R. Forrest,et al.  Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells , 2001 .

[24]  Stephen R. Forrest,et al.  Micropatterning of small molecular weight organic semiconductor thin films using organic vapor phase deposition , 2003 .

[25]  Ifor D. W. Samuel,et al.  Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport , 2003 .

[26]  Chang-Lyoul Lee,et al.  Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine) iridium as a triplet emitter , 2000 .

[27]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[28]  E. A. Silinsh,et al.  Organic Molecular Crystals , 1980 .

[29]  N. Karl,et al.  Studies of Organic Semiconductors for 40 Years—III , 1989 .

[30]  C. M. Hart,et al.  Low-cost all-polymer integrated circuits , 1998, Proceedings of the 24th European Solid-State Circuits Conference.

[31]  Forrest,et al.  Micropatterning of organic electronic devices by cold-welding , 2000, Science.

[32]  Mark E. Thompson,et al.  Effect of carbazole–oxadiazole excited-state complexes on the efficiency of dye-doped light-emitting diodes , 2002 .

[33]  Jun Endo,et al.  Organic Electroluminescent Devices with a Vacuum-Deposited Lewis-Acid-Doped Hole-Injecting Layer , 2002 .

[34]  Stephen R. Forrest,et al.  Electrophosphorescent p–i–n Organic Light‐Emitting Devices for Very‐High‐Efficiency Flat‐Panel Displays , 2002 .

[35]  Stephen R. Forrest,et al.  Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. , 1997, Chemical reviews.

[36]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[37]  Stephen R. Forrest,et al.  High operational stability of electrophosphorescent devices , 2002 .

[38]  Gerwin H. Gelinck,et al.  High-performance all-polymer integrated circuits , 2000 .

[39]  Kees Bastiaansen,et al.  Patterning of polymer-supported metal films by microcutting , 2000, Nature.

[40]  Christopher G. Wilson,et al.  Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network. , 2002, Biophysical journal.

[41]  Donal D. C. Bradley,et al.  Dispersive electron transport in an electroluminescent polyfluorene copolymer measured by the current integration time-of-flight method , 2001 .

[42]  Richard H. Friend,et al.  Meso‐Epitaxial Solution‐Growth of Self‐Organizing Discotic Liquid‐Crystalline Semiconductors , 2003 .

[43]  T. Jackson,et al.  Pentacene organic thin-film transistors-molecular ordering and mobility , 1997, IEEE Electron Device Letters.

[44]  D. D. Eley Studies of Organic Semiconductors for 40 Years—I The Mobile π-Electron—40 Years on , 1989 .

[45]  N. Laurendeau,et al.  Time-series measurements of CH concentration in turbulent CH(4) / air flames by use of picosecond time-resolved laser-induced fluorescence. , 1997, Optics letters.

[46]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[47]  Charles E. Swenberg,et al.  Electronic Processes in Organic Crystals , 1982 .

[48]  W. Warta,et al.  Ultrapure, high mobility organic photoconductors , 1985 .

[49]  J. Sturm,et al.  Integrated three-color organic light-emitting devices , 1996 .

[50]  Stephen R. Forrest,et al.  Electroluminescence from trap‐limited current transport in vacuum deposited organic light emitting devices , 1994 .

[51]  Feng Gao,et al.  Large area, high resolution, dry printing of conducting polymers for organic electronics , 2003 .

[52]  H. Sirringhaus,et al.  Self-Aligned, Vertical-Channel, Polymer Field-Effect Transistors , 2003, Science.

[53]  T. Lippert,et al.  Laser induced molecular transfer using ablation of a triazeno-polymer , 1998 .

[54]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[55]  Karl Leo,et al.  Pyronin B as a donor for n-type doping of organic thin films , 2003 .

[56]  Byung Doo Chin,et al.  Enhanced Luminance of Blue Light‐Emitting Polymers by Blending with Hole‐Transporting Materials , 2003 .

[57]  Donal D. C. Bradley,et al.  Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase , 2000 .

[58]  Stephen R. Forrest,et al.  Material transport regimes and mechanisms for growth of molecular organic thin films using low-pressure organic vapor phase deposition , 2001 .

[59]  Jian Wang,et al.  DIRECT NANOIMPRINT OF SUBMICRON ORGANIC LIGHT-EMITTING STRUCTURES , 1999 .

[60]  A. Heeger,et al.  Flexible light-emitting diodes made from soluble conducting polymers , 1992, Nature.

[61]  Stephen R. Forrest,et al.  Efficient, high-bandwidth organic multilayer photodetectors , 2000 .

[62]  Stephen R. Forrest,et al.  Organic vapor phase deposition: a new method for the growth of organic thin films with large optical non-linearities , 1995 .

[63]  Toshio Matsumoto,et al.  Bright organic electroluminescent devices having a metal-doped electron-injecting layer , 1998 .

[64]  S. R. Forrest,et al.  Organic‐on‐inorganic semiconductor contact barrier diodes. II. Dependence on organic film and metal contact properties , 1984 .

[65]  C. Brabec,et al.  2.5% efficient organic plastic solar cells , 2001 .

[66]  Stephen R. Forrest,et al.  Effects of film morphology and gate dielectric surface preparation on the electrical characteristics of organic-vapor-phase-deposited pentacene thin-film transistors , 2002 .