Biallelic mutations in human DCC cause developmental split-brain syndrome

[1]  S. Brignani,et al.  Axon guidance proteins in neurological disorders , 2015, The Lancet Neurology.

[2]  H. R. Crollius,et al.  Signaling Switch of the Axon Guidance Receptor Robo3 during Vertebrate Evolution , 2014, Neuron.

[3]  Allan R. Jones,et al.  A High-Resolution Spatiotemporal Atlas of Gene Expression of the Developing Mouse Brain , 2014, Neuron.

[4]  S. Rossi,et al.  Congenital mirror movements: Mutational analysis of RAD51 and DCC in 26 cases , 2014, Neurology.

[5]  G. Goodhill,et al.  Netrin-DCC signaling regulates corpus callosum formation through attraction of pioneering axons and by modulating Slit2-mediated repulsion. , 2014, Cerebral cortex.

[6]  T. Huisman,et al.  Undecussated Superior Cerebellar Peduncles and Absence of the Dorsal Transverse Pontine Fibers: a New Axonal Guidance Disorder? , 2014, The Cerebellum.

[7]  L. Richards,et al.  Unc5C and DCC act downstream of Ctip2 and Satb2 and contribute to corpus callosum formation , 2014, Nature Communications.

[8]  A James Barkovich,et al.  Clinical, genetic and imaging findings identify new causes for corpus callosum development syndromes. , 2014, Brain : a journal of neurology.

[9]  Jane Y. Wu,et al.  N-terminal horseshoe conformation of DCC is functionally required for axon guidance and might be shared by other neural receptors , 2013, Journal of Cell Science.

[10]  E. Engle,et al.  Human disorders of axon guidance , 2012, Current Opinion in Neurobiology.

[11]  K. Kullander,et al.  DCC mediated axon guidance of spinal interneurons is essential for normal locomotor central pattern generator function. , 2012, Developmental biology.

[12]  J. Bonkowsky,et al.  Netrin/DCC Signaling Guides Olfactory Sensory Axons to Their Correct Location in the Olfactory Bulb , 2012, The Journal of Neuroscience.

[13]  F. Charron,et al.  Midline axon guidance and human genetic disorders , 2011, Clinical genetics.

[14]  S. Meunier,et al.  A novel DCC mutation and genetic heterogeneity in congenital mirror movements , 2011, Neurology.

[15]  K. Dietz,et al.  Spatio‐temporal deleted in colorectal cancer (DCC) and netrin‐1 expression in human foetal brain development , 2010, Neuropathology and applied neurobiology.

[16]  C. Walsh,et al.  Mutations in WDR62, encoding a centrosome-associated protein, cause microcephaly with simplified gyri and abnormal cortical architecture , 2010, Nature Genetics.

[17]  F. Charron,et al.  Mutations in DCC Cause Congenital Mirror Movements , 2010, Science.

[18]  K. Kullander,et al.  Netrin-1-Dependent Spinal Interneuron Subtypes Are Required for the Formation of Left-Right Alternating Locomotor Circuitry , 2009, The Journal of Neuroscience.

[19]  Pratik Mukherjee,et al.  Diffusion imaging and tractography of congenital brain malformations , 2009, Pediatric Radiology.

[20]  J. Antel,et al.  Netrin 1 and Dcc regulate oligodendrocyte process branching and membrane extension via Fyn and RhoA , 2009, Development.

[21]  J. Antel,et al.  Maintenance of Axo-Oligodendroglial Paranodal Junctions Requires DCC and Netrin-1 , 2008, The Journal of Neuroscience.

[22]  F. Polleux,et al.  Topography of Thalamic Projections Requires Attractive and Repulsive Functions of Netrin-1 in the Ventral Telencephalon , 2008, PLoS biology.

[23]  R. Adolphs,et al.  Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity , 2007, Nature Reviews Neuroscience.

[24]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[25]  R. Baloh,et al.  Diffusion tensor MRI shows abnormal brainstem crossing fibers associated with ROBO3 mutations , 2006, Neurology.

[26]  D. Geschwind,et al.  Mutations in a Human ROBO Gene Disrupt Hindbrain Axon Pathway Crossing and Morphogenesis , 2004, Science.

[27]  F. Murakami,et al.  The Divergent Robo Family Protein Rig-1/Robo3 Is a Negative Regulator of Slit Responsiveness Required for Midline Crossing by Commissural Axons , 2004, Cell.

[28]  Jacqueline H. Finger,et al.  The Netrin 1 Receptors Unc5h3 and Dcc Are Necessary at Multiple Choice Points for the Guidance of Corticospinal Tract Axons , 2002, The Journal of Neuroscience.

[29]  C. Sabatti,et al.  Familial horizontal gaze palsy with progressive scoliosis maps to chromosome 11q23-25 , 2002, Neurology.

[30]  C. Shatz,et al.  Netrin-1 Promotes Thalamic Axon Growth and Is Required for Proper Development of the Thalamocortical Projection , 2000, The Journal of Neuroscience.

[31]  R. Weinberg,et al.  Phenotype of mice lacking functional Deleted in colorectal cancer (Dec) gene , 1997, Nature.

[32]  Hao Wang,et al.  Netrin-1 Is Required for Commissural Axon Guidance in the Developing Vertebrate Nervous System , 1996, Cell.

[33]  M. Masu,et al.  Deleted in Colorectal Cancer (DCC) Encodes a Netrin Receptor , 1996, Cell.

[34]  Y. Jan,et al.  frazzled Encodes a Drosophila Member of the DCC Immunoglobulin Subfamily and Is Required for CNS and Motor Axon Guidance , 1996, Cell.

[35]  C. Glasier,et al.  Clinical and developmental findings in children with giant interhemispheric cysts and dysgenesis of the corpus callosum. , 1995, Pediatric neurology.

[36]  Kathleen R. Cho,et al.  Identification of a chromosome 18q gene that is altered in colorectal cancers. , 1990, Science.

[37]  M. Tessier-Lavigne,et al.  Netrins and their receptors. , 2007, Advances in experimental medicine and biology.