A tractable approximation of non-convex chance constrained optimization with non-Gaussian uncertainties

Chance constrained optimization problems in engineering applications possess highly nonlinear process models and non-convex structures. As a result, solving a nonlinear non-convex chance constrained optimization (CCOPT) problem remains as a challenging task. The major difficulty lies in the evaluation of probability values and gradients of inequality constraints which are nonlinear functions of stochastic variables. This article proposes a novel analytic approximation to improve the tractability of smooth non-convex chance constraints. The approximation uses a smooth parametric function to define a sequence of smooth nonlinear programs (NLPs). The sequence of optimal solutions of these NLPs remains always feasible and converges to the solution set of the CCOPT problem. Furthermore, Karush–Kuhn–Tucker (KKT) points of the approximating problems converge to a subset of KKT points of the CCOPT problem. Another feature of this approach is that it can handle uncertainties with both Gaussian and/or non-Gaussian distributions.

[1]  Pu Li,et al.  Advances and applications of chance-constrained approaches to systems optimisation under uncertainty , 2013, Int. J. Syst. Sci..

[2]  Daniel Kuhn,et al.  Distributionally robust joint chance constraints with second-order moment information , 2011, Mathematical Programming.

[3]  Gerhard Weber,et al.  A NEW ROBUST OPTIMIZATION TOOL APPLIED ON FINANCIAL DATA , 2013 .

[4]  Constantino M. Lagoa,et al.  Semidefinite relaxations of chance constrained algebraic problems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[5]  Jean-Pierre Aubin Mutational and Morphological Analysis , 2012 .

[6]  David Wozabal,et al.  Value-at-Risk optimization using the difference of convex algorithm , 2012, OR Spectr..

[7]  René Henrion,et al.  A Gradient Formula for Linear Chance Constraints Under Gaussian Distribution , 2012, Math. Oper. Res..

[8]  Arkadi Nemirovski,et al.  On safe tractable approximations of chance constraints , 2012, Eur. J. Oper. Res..

[9]  Jian Gu,et al.  A sequential convex program method to DC program withjoint chance constraints , 2012 .

[10]  Gerhard-Wilhelm Weber,et al.  The new robust conic GPLM method with an application to finance: prediction of credit default , 2013, J. Glob. Optim..

[11]  Gerhard-Wilhelm Weber,et al.  Predicting default probabilities in emerging markets by new conic generalized partial linear models and their optimization , 2012 .

[12]  Aouss Gabash,et al.  Active-Reactive Optimal Power Flow in Distribution Networks With Embedded Generation and Battery Storage , 2012, IEEE Transactions on Power Systems.

[13]  René Henrion,et al.  Gradient estimates for Gaussian distribution functions: Application to probabilistically constrained optimization problems , 2012 .

[14]  Y. Z. Mehrjerdi A Chance Constrained Programming , 2012 .

[15]  G. Weber,et al.  RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set , 2011 .

[16]  Chao Feng,et al.  A Kinship Function Approach to Robust and Probabilistic Optimization Under Polynomial Uncertainty , 2011, IEEE Transactions on Automatic Control.

[17]  Hui Zhang,et al.  Chance Constrained Programming for Optimal Power Flow Under Uncertainty , 2011, IEEE Transactions on Power Systems.

[18]  István Deák Efficiency of Monte Carlo computations in very high dimensional spaces , 2011, Central Eur. J. Oper. Res..

[19]  András Prékopa,et al.  Uniform quasi-concavity in probabilistic constrained stochastic programming , 2011, Oper. Res. Lett..

[20]  Yi Yang,et al.  Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach , 2011, Oper. Res..

[21]  Pu Li,et al.  Using Sparse-Grid Methods To Improve Computation Efficiency in Solving Dynamic Nonlinear Chance-Constrained Optimization Problems , 2011 .

[22]  Pu Li,et al.  Monotony analysis and sparse-grid integration for nonlinear chance constrained process optimization , 2011 .

[23]  Marco C. Campi,et al.  A Sampling-and-Discarding Approach to Chance-Constrained Optimization: Feasibility and Optimality , 2011, J. Optim. Theory Appl..

[24]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[25]  John R. Birge,et al.  Introduction to Stochastic programming (2nd edition), Springer verlag, New York , 2011 .

[26]  René Henrion,et al.  A model for dynamic chance constraints in hydro power reservoir management , 2010, Eur. J. Oper. Res..

[27]  Giuseppe Carlo Calafiore,et al.  Random Convex Programs , 2010, SIAM J. Optim..

[28]  René Henrion,et al.  On probabilistic constraints induced by rectangular sets and multivariate normal distributions , 2010, Math. Methods Oper. Res..

[29]  Masahiro Ono,et al.  A Probabilistic Particle-Control Approximation of Chance-Constrained Stochastic Predictive Control , 2010, IEEE Transactions on Robotics.

[30]  Pu Li,et al.  Probabilistic analysis for optimal power flow under uncertainty , 2010 .

[31]  Ronald Hochreiter,et al.  A difference of convex formulation of value-at-risk constrained optimization , 2010 .

[32]  Tariq Muneer,et al.  Critical evaluation of wind speed frequency distribution functions , 2010 .

[33]  Ralf Werner,et al.  Consistency of robust optimization with application to portfolio optimization , 2010 .

[34]  Josselin Garnier,et al.  Asymptotic formulas for the derivatives of probability functions and their Monte Carlo estimations , 2009, Eur. J. Oper. Res..

[35]  Günter Wozny,et al.  Chance constrained optimization of process systems under uncertainty: I. Strict monotonicity , 2009, Comput. Chem. Eng..

[36]  L. Blackmore,et al.  Convex Chance Constrained Predictive Control without Sampling , 2009 .

[37]  J.H. Zhang,et al.  A Chance Constrained Transmission Network Expansion Planning Method With Consideration of Load and Wind Farm Uncertainties , 2009, IEEE Transactions on Power Systems.

[38]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[39]  Alexander Shapiro,et al.  Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications , 2009, J. Optimization Theory and Applications.

[40]  René Henrion,et al.  Scenario reduction in stochastic programming with respect to discrepancy distances , 2006, Comput. Optim. Appl..

[41]  Basil Kouvaritakis,et al.  Model predictive control for systems with stochastic multiplicative uncertainty and probabilistic constraints , 2009, Autom..

[42]  Manfred Morari,et al.  A tractable approximation of chance constrained stochastic MPC based on affine disturbance feedback , 2008, 2008 47th IEEE Conference on Decision and Control.

[43]  René Henrion,et al.  Convexity of chance constraints with independent random variables , 2008, Comput. Optim. Appl..

[44]  Wei Wang,et al.  Sample average approximation of expected value constrained stochastic programs , 2008, Oper. Res. Lett..

[45]  Ralf Werner Cascading: an adjusted exchange method for robust conic programming , 2008, Central Eur. J. Oper. Res..

[46]  Pu Li,et al.  Chance constrained programming approach to process optimization under uncertainty , 2008, Comput. Chem. Eng..

[47]  Pu Li,et al.  Set-Point Optimization for Closed-Loop Control Systems under Uncertainty , 2007 .

[48]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[49]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[50]  Harvey Arellano-Garcia,et al.  Chance Constrained Optimization of Process Systems under Uncertainty , 2006 .

[51]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[52]  Bithin Datta,et al.  CHANCE CONSTRAINED WATER QUALITY MANAGEMENT MODEL FOR RESERVOIR SYSTEMS , 2006 .

[53]  A. Nemirovski,et al.  Scenario Approximations of Chance Constraints , 2006 .

[54]  Armen Der Kiureghian,et al.  Optimal design with probabilistic objective and constraints , 2006 .

[55]  A. Fabbri,et al.  Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market , 2005, IEEE Transactions on Power Systems.

[56]  Xiang Li,et al.  Probabilistically Constrained Linear Programs and Risk-Adjusted Controller Design , 2005, SIAM J. Optim..

[57]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[58]  B. Norman,et al.  A solution to the stochastic unit commitment problem using chance constrained programming , 2004, IEEE Transactions on Power Systems.

[59]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[60]  Thomas Gerstner,et al.  Numerical integration using sparse grids , 2004, Numerical Algorithms.

[61]  William A. Beckman,et al.  A bi-variable probability density function for the daily clearness index , 2003 .

[62]  R. Henrion,et al.  Optimization of a continuous distillation process under random inflow rate , 2003 .

[63]  M. Wendt,et al.  Nonlinear Chance-Constrained Process Optimization under Uncertainty , 2002 .

[64]  Günter Wozny,et al.  Optimal operation of distillation processes under uncertain inflows accumulated in a feed tank , 2002 .

[65]  T. B. M. J. Ouarda,et al.  Chance-constrained optimal control for multireservoir system optimization and risk analysis , 2001 .

[66]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[67]  Michael Nikolaou,et al.  Chance‐constrained model predictive control , 1999 .

[68]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[69]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[70]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[71]  Kurt Marti Differentiation formulas for probability functions: The transformation method , 1996, Math. Program..

[72]  Stan Uryasev,et al.  Derivatives of probability functions and some applications , 1995, Ann. Oper. Res..

[73]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[74]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[75]  M. Kisielewicz Differential Inclusions and Optimal Control , 1991 .

[76]  R. Wets,et al.  Stochastic programming , 1989 .

[77]  János D. Pintér,et al.  Deterministic approximations of probability inequalities , 1989, ZOR Methods Model. Oper. Res..

[78]  W. Rudin Principles of mathematical analysis , 1964 .

[79]  A. Charnes,et al.  Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil , 1958 .

[80]  J. R. Beard Transmission and Distribution , 1927, Transactions of the American Institute of Electrical Engineers.