Ductile fracture in notched bulk metallic glasses

Abstract The deformation of bulk metallic glasses (BMGs) is generally driven by highly localized shear. Due to such inhomogeneous flow, failure occurs in a catastrophic brittle manner through rapid shear banding, often associated with very limited plastic strain macroscopically. Here, we demonstrate metal-like ductile fracture in Zr-based BMGs under tension, a completely opposite situation, by suppressing shear banding. In the absence of shear bands, nucleation of cavies/voids and subsequent void growth and coalescence dominate the initial plastic failure process, enabling BMGs to display the essential characteristics of ductile fracture, with deep dimples and cup-and-cone morphology. This ductile fracture only occurs in amorphous alloys, but not in the fully crystallized counterpart. Furthermore, the characteristic decohesion strength of the ductile fracture in Zr-based BMGs was found to be 1.75 GPa, one of the highest among engineering metals and alloys. These present findings reveal the previously hidden ductile behavior of BMGs, suggesting an alternative method to enhance the ductility of BMGs by removing shear banding.

[1]  P. Yan,et al.  Tensile ductility and necking of metallic glass. , 2007, Nature materials.

[2]  J. Raskin,et al.  Size-dependent failure mechanisms in ZrNi thin metallic glass films , 2014 .

[3]  P. Murali,et al.  Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. , 2011, Physical review letters.

[4]  Robert O Ritchie,et al.  A damage-tolerant glass. , 2011, Nature materials.

[5]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  Lynn Seaman,et al.  Dynamic failure of solids , 1987 .

[7]  F. M. Beremin Cavity formation from inclusions in ductile fracture of A508 steel , 1981 .

[8]  I. Todd,et al.  Implications of elastic constants, fragility, and bonding on permanent deformation in metallic glass , 2011 .

[9]  S. H. Goods,et al.  Overview No. 1: The nucleation of cavities by plastic deformation , 1979 .

[10]  A. Argon,et al.  Separation of second phase particles in spheroidized 1045 steel, Cu-0.6pct Cr alloy, and maraging steel in plastic straining , 1975 .

[11]  Huajian Gao,et al.  Origin of anomalous inverse notch effect in bulk metallic glasses , 2015 .

[12]  H. S. Chen,et al.  Plastic flow and fracture of metallic glass , 1972 .

[13]  C. Schuh,et al.  Densification and strain hardening of a metallic glass under tension at room temperature. , 2013, Physical review letters.

[14]  M. Ashby Work hardening of dispersion-hardened crystals , 1966 .

[15]  Keith C. C. Chan,et al.  Instability of crack propagation in brittle bulk metallic glass , 2008 .

[16]  Mohsen Shahinpoor,et al.  High-Pressure Shock Compression of Solids III , 2011 .

[17]  I. Bernstein,et al.  Hydrogen assisted ductile fracture of spheroidized carbon steels , 1981 .

[18]  Yat Li,et al.  Size-dependent “malleable-to-brittle” transition in a bulk metallic glass , 2008 .

[19]  J. Schroers,et al.  Critical Crystallization for Embrittlement in Metallic Glasses. , 2015, Physical review letters.

[20]  S. H. Chen,et al.  Achieving high energy absorption capacity in cellular bulk metallic glasses , 2015, Scientific Reports.

[21]  P. Thomason,et al.  A VIEW ON DUCTILE‐FRACTURE MODELLING , 1998 .

[22]  J. Schroers,et al.  Designing tensile ductility in metallic glasses , 2013, Nature Communications.

[23]  Weihua Wang,et al.  Intrinsic plasticity or brittleness of metallic glasses , 2005 .

[24]  Gang Wang,et al.  Super Plastic Bulk Metallic Glasses at Room Temperature , 2007, Science.

[25]  Evan Ma,et al.  Shear bands in metallic glasses , 2013 .

[26]  S. Wiederhorn,et al.  Fracture of silicate glasses: ductile or brittle? , 2004, Physical review letters.

[27]  Anthony Kelly,et al.  Ductile and brittle crystals , 1967 .

[28]  P. Zhang,et al.  Notch Effect of Materials: Strengthening or Weakening? , 2014 .

[29]  M. Vedani,et al.  Influence of interface properties on mechanical behaviour of particle reinforced metal matrix composite , 1994 .

[30]  W. Johnson,et al.  A universal criterion for plastic yielding of metallic glasses with a (T/Tg) 2/3 temperature dependence. , 2005, Physical review letters.

[31]  R. Ritchie The conflicts between strength and toughness. , 2011, Nature materials.

[32]  S. Kurtz,et al.  Notch sensitivity of PEEK in monotonic tension. , 2009, Biomaterials.

[33]  J. Raskin,et al.  Homogeneous flow and size dependent mechanical behavior in highly ductile Zr65Ni35 metallic glass films , 2017 .

[34]  T. Hufnagel,et al.  Mechanical behavior of amorphous alloys , 2007 .

[35]  Olivier Bouaziz,et al.  Characterization and modeling of void nucleation by interface decohesion in dual phase steels , 2010 .

[36]  R. Ritchie,et al.  Size-dependent fracture toughness of bulk-metallic glasses , 2014 .

[37]  James R. Rice,et al.  Ductile versus brittle behaviour of crystals , 1974 .

[38]  M. Ashby,et al.  Flow characteristics of highly constrained metal wires , 1989 .

[39]  Yujie Wei,et al.  Notch strengthening or weakening governed by transition of shear failure to normal mode fracture , 2015, Scientific Reports.

[40]  R. Ritchie,et al.  On the understanding of the effects of sample size on the variability in fracture toughness of bulk metallic glasses , 2017 .

[41]  J. Shang,et al.  Crack-resistance curve of a Zr-Ti-Cu-Al bulk metallic glass with extraordinary fracture toughness , 2012 .

[42]  U. Ramamurty,et al.  Cavitation-Induced Fracture Causes Nanocorrugations in Brittle Metallic Glasses. , 2016, Physical review letters.

[43]  W. Wang,et al.  Fracture of brittle metallic glasses: brittleness or plasticity. , 2005, Physical review letters.

[44]  S. H. Goods,et al.  THE NUCLEATION OF CAVITIES BY PLASTIC DEFORMATION , 1983 .

[45]  P. Thomason,et al.  Ductile Fracture of Metals , 1990 .

[46]  Percy Williams Bridgman,et al.  Studies in large plastic flow and fracture , 1964 .

[47]  Frans Spaepen,et al.  A microscopic mechanism for steady state inhomogeneous flow in metallic glasses , 1977 .

[48]  Julia R Greer,et al.  Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. , 2010, Nature materials.

[49]  Marin Soljacic,et al.  Probing topological protection using a designer surface plasmon structure. , 2012 .

[50]  O. Richmond,et al.  Tensile fracture and fractographic analysis of 1045 spheroidized steel under hydrostatic pressure , 1990 .

[51]  C. Volkert,et al.  Room Temperature Homogeneous Ductility of Micrometer‐Sized Metallic Glass , 2014, Advanced materials.

[52]  U. Ramamurty,et al.  Microstructure and mechanical properties of a partially crystallized La-based bulk metallic glass , 2003 .

[53]  J. Im,et al.  Cavity formation from inclusions in ductile fracture , 1975 .

[54]  J. Eckert,et al.  Fracture mechanisms in bulk metallic glassy materials. , 2003, Physical review letters.

[55]  C. Pampillo Flow and fracture in amorphous alloys , 1975 .

[56]  Reinhold H. Dauskardt,et al.  Mean stress effects on flow localization and failure in a bulk metallic glass , 2001 .

[57]  Lin Liu,et al.  Softening and dilatation in a single shear band , 2011 .

[58]  Jingxue Sun,et al.  Bulk metallic glasses: Smaller is softer , 2007 .

[59]  R. Hixson,et al.  Quantitative description of damage evolution in ductile fracture of tantalum , 2000 .

[60]  X. Gong,et al.  Ductile fracture of bulk metallic glass Zr50Cu40Al10 under high strain-rate loading , 2016 .

[61]  A. Thompson,et al.  Ductile fracture in spheroidized 1520 steel , 1988 .