Rank three permutation groups with rank three subconstituents

Abstract Finite permutation groups of rank 3 such that both the subconstituents have rank 3 are classified. This is equivalent to classifying all finite undirected graphs with the following property: every isomorphism between subgraphs on at most three vertices is a restriction of an automorphism of the graph.

[1]  William M. Kantor,et al.  The rank 3 permutation representations of the finite classical groups , 1982 .

[2]  Xavier L. Hubaut,et al.  Strongly regular graphs , 1975, Discret. Math..

[3]  J. J. Seidel,et al.  On two-graphs, and Shult's characterization of symplectic and orthogonal geometries over GF(2) , 1973 .

[4]  Gary M. Seitz,et al.  On the minimal degrees of projective representations of the finite Chevalley groups , 1974 .

[5]  Peter J. Cameron,et al.  Strongly Regular Graphs Having Strongly Regular Subconstituents , 1978 .

[6]  R. Guralnick Subgroups of prime power index in a simple group , 1983 .

[7]  Robert Steinberg,et al.  Automorphisms of Finite Linear Groups , 1960, Canadian Journal of Mathematics.

[8]  D. G. Higman Finite permutation groups of rank 3 , 1964 .

[9]  W. Kantor,et al.  The 2-transitive permutation representa-tions of the finite Chevalley groups , 1976 .

[10]  Shengming Shi The rank 3 permutation representations of finite groups of type G2 , 1983 .

[11]  R. Woodrow,et al.  Countable ultrahomogeneous undirected graphs , 1980 .

[12]  I. G. MacDonald,et al.  Lectures on Lie Groups and Lie Algebras: Simple groups of Lie type , 1995 .

[13]  Peter J. Cameron,et al.  6-Transitive graphs , 1980, J. Comb. Theory, Ser. B.

[14]  Eiichi Bannai Maximal subgroups of low rank of finite symmetric and alternating groups , 1972 .

[15]  M. S. Smith,et al.  On rank 3 permutation groups , 1975 .

[16]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[17]  J. Seidel Strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3 , 1968 .

[18]  Gary M. Seitz,et al.  Flag-Transitive Subgroups of Chevalley Groups , 1973 .

[19]  Bruce N. Cooperstein,et al.  The geometry of root subgroups in exceptional groups. I. , 1979 .

[20]  P. Cameron FINITE PERMUTATION GROUPS AND FINITE SIMPLE GROUPS , 1981 .