Performance analysis of space-time coding with imperfect channel estimation

We analyze the error performance of a space-time coding system using N transmit and M receive antennas with imperfect channel estimation in flat Rayleigh fading. A least-squares estimate of the channel matrix is obtained by using a sequence of pilot code vectors. The estimate is found to be perturbed by an M/spl times/N perturbation matrix with zero-mean circular Gaussian entries. Using the characteristic function of the decision variable, we derive a closed-form expression for the pairwise error probability (PEP). From the same expression, the PEP in case of perfect channel estimation is also obtained. Numerical results show the degradation in performance due to imperfect channel estimation that can be compensated by increasing the number of receive antennas.