Quantum network routing and local complementation

Quantum communication between distant parties is based on suitable instances of shared entanglement. For efficiency reasons, in an anticipated quantum network beyond point-to-point communication, it is preferable that many parties can communicate simultaneously over the underlying infrastructure; however, bottlenecks in the network may cause delays. Sharing of multi-partite entangled states between parties offers a solution, allowing for parallel quantum communication. Specifically for the two-pair problem, the butterfly network provides the first instance of such an advantage in a bottleneck scenario. In this paper, we propose a more general method for establishing EPR pairs in arbitrary networks. The main difference from standard repeater network approaches is that we use a graph state instead of maximally entangled pairs to achieve long-distance simultaneous communication. We demonstrate how graph-theoretic tools, and specifically local complementation, help decrease the number of required measurements compared to usual methods applied in repeater schemes. We examine other examples of network architectures, where deploying local complementation techniques provides an advantage. We finally consider the problem of extracting graph states for quantum communication via local Clifford operations and Pauli measurements, and discuss that while the general problem is known to be NP-complete, interestingly, for specific classes of structured resources, polynomial time algorithms can be identified.

[1]  Bart De Moor,et al.  Efficient algorithm to recognize the local Clifford equivalence of graph states , 2004 .

[2]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[3]  Iordanis Kerenidis,et al.  Shortcuts to quantum network routing , 2015, ArXiv.

[4]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[5]  Sang-il Oum,et al.  Rank‐width of random graphs , 2010, J. Graph Theory.

[6]  André Bouchet,et al.  Graphic presentations of isotropic systems , 1987, J. Comb. Theory, Ser. B.

[7]  Martin Rötteler,et al.  Quantum linear network coding as one-way quantum computation , 2014, TQC.

[8]  W. Dur,et al.  Modular architectures for quantum networks , 2017, 1711.02606.

[9]  Masahito Hayashi,et al.  Single-shot secure quantum network coding on butterfly network with free public communication , 2017, Quantum Science and Technology.

[10]  P. Bousso,et al.  DISC , 2012 .

[11]  Damian Markham,et al.  A Simple Protocol for Certifying Graph States and Applications in Quantum Networks , 2018, Cryptogr..

[12]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[13]  Wolfgang Dur,et al.  Entanglement purification protocols for all graph states , 2006 .

[14]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[15]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[16]  Michael Epping,et al.  Large-scale quantum networks based on graphs , 2015, 1504.06599.

[17]  Mio Murao,et al.  Network Coding for Distributed Quantum Computation Over Cluster and Butterfly Networks , 2015, IEEE Transactions on Information Theory.

[18]  Klaus Sutner,et al.  On σ-Automata , 1988, Complex Syst..

[19]  W. Munro,et al.  Hybrid quantum repeater using bright coherent light. , 2005, Physical Review Letters.

[20]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[21]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[22]  Sang-il Oum,et al.  Rank-width: Algorithmic and structural results , 2016, Discret. Appl. Math..

[23]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[24]  D. Gross,et al.  Novel schemes for measurement-based quantum computation. , 2006, Physical review letters.

[25]  B A Bell,et al.  Experimental demonstration of graph-state quantum secret sharing , 2014, Nature Communications.

[26]  Masahito Hayashi,et al.  Quantum Network Coding , 2006, STACS.

[27]  Martin Rötteler,et al.  General Scheme for Perfect Quantum Network Coding with Free Classical Communication , 2009, ICALP.

[28]  W. Dur,et al.  Measurement-based quantum repeaters , 2012, 1204.2178.

[29]  Daniël Paulusma,et al.  Computing Small Pivot-Minors , 2018, WG.

[30]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[31]  Wei Zhang,et al.  Entanglement swapping with independent sources over an optical-fiber network , 2016, 1606.07503.

[32]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[33]  Sang-il Oum Rank-width is less than or equal to branch-width , 2008 .

[34]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[35]  Debbie W. Leung,et al.  Quantum Network Communication—The Butterfly and Beyond , 2010, IEEE Transactions on Information Theory.

[36]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[37]  Lin Chen,et al.  Multicopy and stochastic transformation of multipartite pure states , 2010, 1012.3564.

[38]  Martin Rötteler,et al.  Constructing quantum network coding schemes from classical nonlinear protocols , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[39]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[40]  Hoi-Kwong Lo,et al.  Conference key agreement and quantum sharing of classical secrets with noisy GHZ states , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[41]  Nicole Yunger Halpern,et al.  Quantum voting and violation of Arrow's Impossibility Theorem , 2015, 1501.00458.

[42]  Mehdi Mhalla,et al.  Resources Required for Preparing Graph States , 2006, ISAAC.

[43]  Harry Buhrman,et al.  The European Quantum Technologies Roadmap , 2017, 1712.03773.

[44]  Masahito Hayashi,et al.  Secure Quantum Network Coding on Butterfly Network , 2017 .

[45]  Bruno Courcelle,et al.  Vertex-minors, monadic second-order logic, and a conjecture by Seese , 2007, J. Comb. Theory, Ser. B.

[46]  Masahito Hayashi,et al.  Prior entanglement between senders enables perfect quantum network coding with modification , 2007, 0706.0197.

[47]  W Dür,et al.  Long-Range Big Quantum-Data Transmission. , 2017, Physical review letters.

[48]  Sang-il Oum,et al.  Approximating rank-width and clique-width quickly , 2008, ACM Trans. Algorithms.

[49]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[50]  Axel Dahlberg,et al.  How to transform graph states using single-qubit operations: computational complexity and algorithms , 2018, Quantum Science and Technology.

[51]  Bart De Moor,et al.  Graphical description of the action of local Clifford transformations on graph states , 2003, quant-ph/0308151.

[52]  Dirk Schlingemann Stabilizer codes can be realized as graph codes , 2002, Quantum Inf. Comput..

[53]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[54]  S. Wehner,et al.  Fully device-independent conference key agreement , 2017, 1708.00798.

[55]  W. Dur,et al.  Two-dimensional quantum repeaters , 2016, 1604.05352.

[57]  Michael Epping,et al.  Robust entanglement distribution via quantum network coding , 2016 .

[58]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[59]  Axel Dahlberg,et al.  Transforming graph states using single-qubit operations , 2018, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.