Automotive Li-Ion Batteries: Current Status and Future Perspectives

[1]  Swiss Federal Institute of Technology Zürich , 2018, The Grants Register 2019.

[2]  M. Carvalho,et al.  The lithium-ion battery: State of the art and future perspectives , 2018, Renewable and Sustainable Energy Reviews.

[3]  Jun Lu,et al.  Batteries and fuel cells for emerging electric vehicle markets , 2018 .

[4]  M. Winter,et al.  Performance and cost of materials for lithium-based rechargeable automotive batteries , 2018 .

[5]  S. Passerini,et al.  A cost and resource analysis of sodium-ion batteries , 2018 .

[6]  E. Olivetti,et al.  Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals , 2017 .

[7]  P. Cui,et al.  An advanced construction strategy of all-solid-state lithium batteries with excellent interfacial compatibility and ultralong cycle life , 2017 .

[8]  Kun Fu,et al.  Protected Lithium‐Metal Anodes in Batteries: From Liquid to Solid , 2017, Advanced materials.

[9]  Adam Hawkes,et al.  The future cost of electrical energy storage based on experience rates , 2017, Nature Energy.

[10]  She-huang Wu,et al.  Storage fading of a commercial 18650 cell comprised with NMC/LMO cathode and graphite anode , 2017 .

[11]  Yi Cui,et al.  Reviving the lithium metal anode for high-energy batteries. , 2017, Nature nanotechnology.

[12]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[13]  Swapnil Jain,et al.  Emerging trends in battery technology , 2017 .

[14]  Peter Lamp,et al.  Nickel-Rich Layered Cathode Materials for Automotive Lithium-Ion Batteries: Achievements and Perspectives , 2017 .

[15]  Zonghai Chen,et al.  The role of nanotechnology in the development of battery materials for electric vehicles. , 2016, Nature nanotechnology.

[16]  Jeff Dahn,et al.  A systematic study on the reactivity of different grades of charged Li[Ni x Mn y Co z ]O 2 with electrolyte at elevated temperatures using accelerating rate calorimetry , 2016 .

[17]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[18]  Hyun-Wook Lee,et al.  Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries , 2016, Nature Energy.

[19]  Radoslav S Dimitrov The Paris Agreement on Climate Change: Behind Closed Doors , 2016, Global Environmental Politics.

[20]  J. Rogelj,et al.  Paris Agreement climate proposals need a boost to keep warming well below 2 °C , 2016, Nature.

[21]  Byung-Beom Lim,et al.  Comparative Study of Ni-Rich Layered Cathodes for Rechargeable Lithium Batteries: Li[Ni0.85Co0.11Al0.04]O2 and Li[Ni0.84Co0.06Mn0.09Al0.01]O2 with Two-Step Full Concentration Gradients , 2016 .

[22]  T. Schmidt,et al.  Limiting the public cost of stationary battery deployment by combining applications , 2016, Nature Energy.

[23]  D. Block,et al.  2015 electric vehicle market summary and barriers. , 2016 .

[24]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[25]  Mike Hulme,et al.  1.5 [deg]C and climate research after the Paris Agreement , 2016 .

[26]  Ping Liu,et al.  Long-range, low-cost electric vehicles enabled by robust energy storage , 2015 .

[27]  Shiguo Zhang,et al.  Recent Advances in Electrolytes for Lithium–Sulfur Batteries , 2015 .

[28]  Silvia Kreibiehl Global Trends in Renewable Energy Investment 2015 , 2015 .

[29]  B. Nykvist,et al.  Rapidly falling costs of battery packs for electric vehicles , 2015 .

[30]  Peter Lamp,et al.  Future generations of cathode materials: an automotive industry perspective , 2015 .

[31]  Suli Zou,et al.  A Distributed Charging Coordination for Large-Scale Plug-In Electric Vehicles Considering Battery Degradation Cost , 2015, IEEE Transactions on Control Systems Technology.

[32]  Jaephil Cho,et al.  A New High Power LiNi0.81Co0.1Al0.09O2 Cathode Material for Lithium‐Ion Batteries , 2014 .

[33]  Venkataraman Thangadurai,et al.  Garnet-Type Solid-State Fast Li Ion Conductors for Li Batteries: Critical Review , 2014 .

[34]  Jay Lee,et al.  Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility , 2014 .

[35]  Venkataraman Thangadurai,et al.  Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. , 2014, Chemical Society reviews.

[36]  Y. Chiang,et al.  Extended solid solutions and coherent transformations in nanoscale olivine cathodes. , 2014, Nano letters.

[37]  Thomas Franke,et al.  What drives range preferences in electric vehicle users , 2013 .

[38]  A. Manthiram,et al.  In situ Raman spectroscopy of LiFePO4: size and morphology dependence during charge and self-discharge , 2013, Nanotechnology.

[39]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[40]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[41]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[42]  Suzanna Long,et al.  Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions , 2012 .

[43]  J. Tarascon,et al.  Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application , 2012 .

[44]  Jeremy Neubauer,et al.  Sensitivity of battery electric vehicle economics to drive patterns, vehicle range, and charge strategies , 2012 .

[45]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[46]  Lin Gu,et al.  Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. , 2012, Journal of the American Chemical Society.

[47]  D. Darensbourg,et al.  Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. , 2012, Chemical Society reviews.

[48]  C. Liang,et al.  Synthesis of LiNiO2 cathode materials with homogeneous Al doping at the atomic level , 2011 .

[49]  Bruno Scrosati,et al.  A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. , 2011, Nature communications.

[50]  G. Keoleian,et al.  Global Lithium Availability , 2011 .

[51]  Michel Luis Rivier Abbad,et al.  Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships , 2011 .

[52]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[53]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[54]  J. Goodenough,et al.  Monodisperse porous LiFePO4 microspheres for a high power Li-ion battery cathode. , 2011, Journal of the American Chemical Society.

[55]  J. Xie,et al.  Single‐Crystalline LiMn2O4 Nanotubes Synthesized Via Template‐Engaged Reaction as Cathodes for High‐Power Lithium Ion Batteries , 2011 .

[56]  J. Maier,et al.  Li6PO5Br and Li6PO5Cl: The first Lithium-Oxide-Argyrodites , 2010 .

[57]  P. Kurzweil,et al.  Gaston Planté and his invention of the lead–acid battery—The genesis of the first practical rechargeable battery , 2010 .

[58]  Ulrich Eberle,et al.  Sustainable transportation based on electric vehicle concepts: a brief overview , 2010 .

[59]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[60]  Thomas H. Bradley,et al.  The effect of communication architecture on the availability, reliability, and economics of plug-in hybrid electric vehicle-to-grid ancillary services , 2010 .

[61]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[62]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[63]  D. Diamond The impact of government incentives for hybrid-electric vehicles: Evidence from US states , 2009 .

[64]  Kevin Morrow,et al.  Plug-in Hybrid Electric Vehicle Charging Infrastructure Review , 2008 .

[65]  Linda F. Nazar,et al.  Proof of Supervalent Doping in Olivine LiFePO4 , 2008 .

[66]  M. Armand,et al.  Building better batteries , 2008, Nature.

[67]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[68]  H. Jang,et al.  Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black , 2006 .

[69]  D. Abraham,et al.  Diagnostic examination of thermally abused high-power lithium-ion cells , 2006 .

[70]  Á. Caballero,et al.  Crystallinity Control of a Nanostructured LiNi0.5Mn1.5O4 Spinel via Polymer‐Assisted Synthesis: A Method for Improving Its Rate Capability and Performance in 5 V Lithium Batteries , 2006 .

[71]  L. T. Lam,et al.  Development of ultra-battery for hybrid-electric vehicle applications , 2006 .

[72]  G. Amatucci,et al.  High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials : Electrochemical impact of electronic conductivity and morphology , 2006 .

[73]  A. Manthiram,et al.  Role of Chemical and Structural Stabilities on the Electrochemical Properties of Layered LiNi1 ∕ 3Mn1 ∕ 3Co1 ∕ 3O2 Cathodes , 2005 .

[74]  P. Maxwell,et al.  The lithium industry: Its recent evolution and future prospects , 2005 .

[75]  Yang-Kook Sun,et al.  Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. , 2005, Journal of the American Chemical Society.

[76]  Venkat Srinivasan,et al.  Discharge Model for the Lithium Iron-Phosphate Electrode , 2004 .

[77]  Jaephil Cho Dependence of AlPO4 coating thickness on overcharge behaviour of LiCoO2 cathode material at 1 and 2 C rates , 2004 .

[78]  C. Yoon,et al.  Comparative Study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 Cathodes Having Two Crystallographic Structures: Fd3̄m and P4332 , 2004 .

[79]  S. Teat,et al.  Synthesis and characterization of a cobalt(II) single-molecule magnet. , 2003, Angewandte Chemie.

[80]  B. Hwang,et al.  Effect of synthesis conditions on electrochemical properties of LiNi1−yCoyO2 cathode for lithium rechargeable batteries , 2003 .

[81]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[82]  C. C. Chan,et al.  The state of the art of electric and hybrid vehicles , 2002, Proc. IEEE.

[83]  Sarantis Lolos,et al.  Energy consumption and economic growth: assessing the evidence from Greece , 2002 .

[84]  Y. Nishi Lithium ion secondary batteries; past 10 years and the future , 2001 .

[85]  D. D. MacNeil,et al.  Layered Cathode Materials Li [ Ni x Li ( 1 / 3 − 2x / 3 ) Mn ( 2 / 3 − x / 3 ) ] O 2 for Lithium-Ion Batteries , 2001 .

[86]  P. S. Liu,et al.  High-temperature oxidation behavior of aluminide coatings on a new cobalt-base superalloy in air , 2001 .

[87]  Kyung-Keun Lee,et al.  Characterization of LiNi0.85Co0.10M0.05O2 (M = Al, Fe) as a cathode material for lithium secondary batteries , 2001 .

[88]  Zhaolin Liu,et al.  Synthesis and characterization of LiNi1−x−yCoxMnyO2 as the cathode materials of secondary lithium batteries , 1999 .

[89]  P. Gifford,et al.  Development of advanced nickel/metal hydride batteries for electric and hybrid vehicles , 1999 .

[90]  P. Blanchard,et al.  Evaluation of Zr ( Ni , Mn ) 2 Laves Phase Alloys as Negative Active Material for Ni‐MH Electric Vehicle Batteries , 1998 .

[91]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[92]  Maurice Brookhart,et al.  Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene , 1998 .

[93]  Carlos Pecharromán,et al.  Relationship between Activation Energy and Bottleneck Size for Li+ Ion Conduction in NASICON Materials of Composition LiMM‘(PO4)3; M, M‘ = Ge, Ti, Sn, Hf , 1998 .

[94]  Gerbrand Ceder,et al.  Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries , 1997 .

[95]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[96]  S. Okada,et al.  Reversibility of LiNiO2 cathode , 1997 .

[97]  Tsutomu Ohzuku,et al.  Synthesis and Characterization of LiAl1 / 4Ni3 / 4 O 2 ( R 3̄m ) for Lithium‐Ion (Shuttlecock) Batteries , 1995 .

[98]  H. Kurokawa,et al.  Electrochemical characteristics of LiNiO2 and LiCoO2 as a positive material for lithium secondary batteries , 1995 .

[99]  Tsutomu Ohzuku,et al.  Solid‐State Redox Reactions of LiNi1 / 2Co1 / 2 O 2 ( R 3̄m ) for 4 Volt Secondary Lithium Cells , 1994 .

[100]  Liquan Chen,et al.  High lithium ion conductivity in the perovskite-type compounds Ln12Li12TiO3(Ln=La,Pr,Nd,Sm) , 1994 .

[101]  T. Ohzuku,et al.  Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells , 1993 .

[102]  C. Delmas,et al.  The cycling properties of the LixNi1-yCoyO2 electrode , 1993 .

[103]  M. Crawford Back to the Energy Crisis: Waning U.S. oil output, rising imports, and Middle East tensions are reheating energy policy debates of the 1970s. , 1987, Science.

[104]  John B. Goodenough,et al.  Lithium insertion into manganese spinels , 1983 .

[105]  Arumugam Manthiram,et al.  A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries , 2017 .

[106]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[107]  B. Polzin,et al.  Correlation of Electrolyte Volume and Electrochemical Performance in Lithium-Ion Pouch Cells with Graphite Anodes and NMC532 Cathodes , 2017 .

[108]  Brett Lois,et al.  Lithium ion battery value chain and related opportunities for Europe , 2016 .

[109]  Avicenne Energy,et al.  The Rechargeable Battery Market And Main Trends 2011 2020 , 2015 .

[110]  Karim Zaghib,et al.  Rechargeable lithium batteries for energy storage in smart grids , 2015 .

[111]  Doron Aurbach,et al.  Structural and Electrochemical Evidence of Layered to Spinel Phase Transformation of Li and Mn Rich Layered Cathode Materials of the Formulae xLi[Li1/3Mn2/3]O2.(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.2, 0.4, 0.6) upon Cycling , 2014 .

[112]  Bob R. Powell,et al.  Erratum: Structural and Electrochemical Evidence of Layered to Spinel Phase Transformation of Li and Mn Rich Layered Cathode Materials of the Formulae xLi[Li1/3Mn2/3]O2·(1-x)LiMn1/3Ni1/3Co1/3O2 (x = 0.2, 0.4, 0.6) upon Cycling [J. Electrochem. Soc., 161, A1534 (2014)] , 2014 .

[113]  P. T. Krein,et al.  Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles , 2013, IEEE Transactions on Power Electronics.

[114]  B. Lucht,et al.  Failure Mechanism of Graphite/LiNi0.5Mn1.5O4 Cells at High Voltage and Elevated Temperature , 2013 .

[115]  Jiazhuo G. Wang,et al.  The Power of Batteries: The Story of BYD , 2013 .

[116]  T. Shiga,et al.  Electrochemical properties of LiPON films made from a mixed powder target of Li3PO4 and Li2O , 2012 .

[117]  Adam Szczepanek,et al.  Fast Charging vs. Slow Charging: Pros and cons for the New Age of Electric Vehicles , 2009 .

[118]  Venkataraman Thangadurai,et al.  Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction , 2005 .

[119]  Jaephil Cho,et al.  Complete blocking of Mn3+ ion dissolution from a LiMn2O4 spinel intercalation compound by Co3O4 coating , 2001 .