Chemical modulators of ribosome biogenesis as biological probes.

[1]  John P. Overington,et al.  The promise and peril of chemical probes. , 2015, Nature chemical biology.

[2]  J. Cleveland,et al.  Hrr25/CK1δ-directed release of Ltv1 from pre-40S ribosomes is necessary for ribosome assembly and cell growth , 2015, The Journal of cell biology.

[3]  Jonathan M Stokes,et al.  Chemical Inhibition of Bacterial Ribosome Biogenesis Shows Efficacy in a Worm Infection Model , 2015, Antimicrobial Agents and Chemotherapy.

[4]  Joseph H. Davis,et al.  Discovery of a small molecule that inhibits bacterial ribosome biogenesis , 2014, eLife.

[5]  B. Triggs-Raine,et al.  Diverse diseases from a ubiquitous process: The ribosomopathy paradox , 2014, FEBS letters.

[6]  E. Brown,et al.  Phenotypic investigations of the depletion of EngA in Escherichia coli are consistent with a role in ribosome biogenesis. , 2014, FEMS microbiology letters.

[7]  Z. Luthey-Schulten,et al.  Protein-guided RNA dynamics during early ribosome assembly , 2014, Nature.

[8]  E. Krieger,et al.  The Drug Diazaborine Blocks Ribosome Biogenesis by Inhibiting the AAA-ATPase Drg1* , 2013, The Journal of Biological Chemistry.

[9]  J. Woolford,et al.  Ribosome Biogenesis in the Yeast Saccharomyces cerevisiae , 2013, Genetics.

[10]  K. Karbstein Quality control mechanisms during ribosome maturation. , 2013, Trends in cell biology.

[11]  K. Lewis Platforms for antibiotic discovery , 2013, Nature Reviews Drug Discovery.

[12]  E. Brown,et al.  A High-Throughput Screen of the GTPase Activity of Escherichia coli EngA to Find an Inhibitor of Bacterial Ribosome Biogenesis , 2013, Journal of biomolecular screening.

[13]  W. S. Champney,et al.  Inhibition of Ribosomal Subunit Synthesis in Escherichia coli by the Vanadyl Ribonucleoside Complex , 2013, Current Microbiology.

[14]  J. Williamson,et al.  Characterization of the ribosome biogenesis landscape in E. coli using quantitative mass spectrometry. , 2013, Journal of molecular biology.

[15]  G. Walker,et al.  Conserved bacterial RNase YbeY plays key roles in 70S ribosome quality control and 16S rRNA maturation. , 2013, Molecular cell.

[16]  Daniel N. Wilson Ribosome-targeting antibiotics and mechanisms of bacterial resistance , 2013, Nature Reviews Microbiology.

[17]  Gernot Fruhmann,et al.  Rlp24 activates the AAA-ATPase Drg1 to initiate cytoplasmic pre-60S maturation , 2012, The Journal of cell biology.

[18]  Joseph H. Davis,et al.  Measuring the dynamics of E. coli ribosome biogenesis using pulse-labeling and quantitative mass spectrometry. , 2012, Molecular bioSystems.

[19]  W. S. Champney,et al.  The vanadyl ribonucleoside complex inhibits ribosomal subunit formation in Staphylococcus aureus. , 2012, The Journal of antimicrobial chemotherapy.

[20]  Carleen Cullinane,et al.  Inhibition of RNA polymerase I as a therapeutic strategy to promote cancer-specific activation of p53. , 2012, Cancer cell.

[21]  B. Strunk,et al.  A Translation-Like Cycle Is a Quality Control Checkpoint for Maturing 40S Ribosome Subunits , 2012, Cell.

[22]  E. Brown,et al.  Cryo-electron microscopy structure of the 30S subunit in complex with the YjeQ biogenesis factor. , 2011, RNA.

[23]  Cherisse R. Loucks,et al.  Ribosome Assembly Factors Prevent Premature Translation Initiation by 40S Assembly Intermediates , 2011, Science.

[24]  Eric D Brown,et al.  Antibiotics as probes of biological complexity. , 2011, Nature chemical biology.

[25]  J. Williamson,et al.  Assembly of bacterial ribosomes. , 2011, Annual review of biochemistry.

[26]  Daniel N. Wilson,et al.  Antibiotic‐induced ribosomal assembly defects result from changes in the synthesis of ribosomal proteins , 2011, Molecular microbiology.

[27]  R. Hannan,et al.  Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. , 2011, Cancer research.

[28]  Clinton S Potter,et al.  Visualizing Ribosome Biogenesis: Parallel Assembly Pathways for the 30S Subunit , 2010, Science.

[29]  J. Williamson,et al.  Quantitative proteomic analysis of ribosome assembly and turnover in vivo. , 2010, Journal of molecular biology.

[30]  Lourdes M. Aleman,et al.  Role of Escherichia coli YbeY, a highly conserved protein, in rRNA processing , 2010, Molecular microbiology.

[31]  C. Deisenroth,et al.  Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway , 2010, Oncogene.

[32]  P. Sergiev,et al.  Purification of 30S ribosomal subunit by streptavidin affinity chromatography. , 2010, Biochimie.

[33]  J. Williamson,et al.  Kinetic cooperativity in Escherichia coli 30S ribosomal subunit reconstitution reveals additional complexity in the assembly landscape , 2010, Proceedings of the National Academy of Sciences.

[34]  Daniel N. Wilson The A–Z of bacterial translation inhibitors , 2009, Critical reviews in biochemistry and molecular biology.

[35]  Amy Lin,et al.  Anticancer activity of CX-3543: a direct inhibitor of rRNA biogenesis. , 2009, Cancer research.

[36]  R. Britton,et al.  Role of GTPases in bacterial ribosome assembly. , 2009, Annual review of microbiology.

[37]  M. Moore,et al.  A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. , 2009, Molecular cell.

[38]  B. Maguire Inhibition of Bacterial Ribosome Assembly: a Suitable Drug Target? , 2009, Microbiology and Molecular Biology Reviews.

[39]  Sunia A Trauger,et al.  Quantitative ESI-TOF analysis of macromolecular assembly kinetics. , 2008, Analytical chemistry.

[40]  A. Mankin,et al.  Erythromycin- and Chloramphenicol-Induced Ribosomal Assembly Defects Are Secondary Effects of Protein Synthesis Inhibition , 2008, Antimicrobial Agents and Chemotherapy.

[41]  T. Adilakshmi,et al.  Concurrent nucleation of 16S folding and induced fit in 30S ribosome assembly , 2008, Nature.

[42]  E. Brown,et al.  Genetic Interaction Screens with Ordered Overexpression and Deletion Clone Sets Implicate the Escherichia coli GTPase YjeQ in Late Ribosome Biogenesis , 2008, Journal of bacteriology.

[43]  K. Karbstein Role of GTPases in ribosome assembly. , 2007, Biopolymers.

[44]  M. Kaczanowska,et al.  Ribosome Biogenesis and the Translation Process in Escherichia coli , 2007, Microbiology and Molecular Biology Reviews.

[45]  K. Mortensen,et al.  Hitting bacteria at the heart of the central dogma: sequence-specific inhibition , 2007, Microbial cell factories.

[46]  I. J. van der Klei,et al.  Cytoplasmic Recycling of 60S Preribosomal Factors Depends on the AAA Protein Drg1 , 2007, Molecular and Cellular Biology.

[47]  Huang Xue-wen,et al.  Inhibition of bacterial translation and growth by peptide nucleic acids targeted to domain II of 23S rRNA , 2007, Journal of peptide science : an official publication of the European Peptide Society.

[48]  W. S. Champney The other target for ribosomal antibiotics: inhibition of bacterial ribosomal subunit formation. , 2006, Infectious disorders drug targets.

[49]  W. S. Champney,et al.  Hygromycin B Inhibition of Protein Synthesis and Ribosome Biogenesis in Escherichia coli , 2006, Antimicrobial Agents and Chemotherapy.

[50]  J. Williamson Assembly of the 30S ribosomal subunit , 2005, Quarterly Reviews of Biophysics.

[51]  G. Culver,et al.  Analysis of conformational changes in 16 S rRNA during the course of 30 S subunit assembly. , 2005, Journal of molecular biology.

[52]  W. S. Champney,et al.  Accumulation and turnover of 23S ribosomal RNA in azithromycin-inhibited ribonuclease mutant strains of Escherichia coli , 2005, Archives of Microbiology.

[53]  Daniel N. Wilson,et al.  Interaction of Era with the 30S ribosomal subunit implications for 30S subunit assembly. , 2005, Molecular cell.

[54]  Hermine Schein,et al.  Diazaborine Treatment of Yeast Cells Inhibits Maturation of the 60S Ribosomal Subunit , 2004, Molecular and Cellular Biology.

[55]  Dagmar Klostermeier,et al.  A three-fluorophore FRET assay for high-throughput screening of small-molecule inhibitors of ribosome assembly. , 2004, Nucleic acids research.

[56]  M. Dreyfus,et al.  CsdA, a cold-shock RNA helicase from Escherichia coli, is involved in the biogenesis of 50S ribosomal subunit. , 2004, Nucleic acids research.

[57]  A. Muto,et al.  A novel GTPase activated by the small subunit of ribosome. , 2004, Nucleic acids research.

[58]  R. Brimacombe,et al.  Affinity Purification of Ribosomes with a Lethal G2655C Mutation in 23 S rRNA That Affects the Translocation* , 2003, Journal of Biological Chemistry.

[59]  P. Gleizes,et al.  Sequential Protein Association with Nascent 60S Ribosomal Particles , 2003, Molecular and Cellular Biology.

[60]  M. Deutscher,et al.  Quality control of ribosomal RNA mediated by polynucleotide phosphorylase and RNase R , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Inouye,et al.  Suppression of defective ribosome assembly in a rbfA deletion mutant by overexpression of Era, an essential GTPase in Escherichia coli , 2003, Molecular microbiology.

[62]  Arlen W. Johnson,et al.  Nuclear export of ribosomal subunits. , 2002, Trends in biochemical sciences.

[63]  Wayne A. Decatur,et al.  rRNA modifications and ribosome function. , 2002, Trends in biochemical sciences.

[64]  Bernhard Kuster,et al.  90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. , 2002, Molecular cell.

[65]  E. Petfalski,et al.  Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing , 2002, The Journal of cell biology.

[66]  P. Grandi,et al.  Identification of a 60S preribosomal particle that is closely linked to nuclear export. , 2001, Molecular cell.

[67]  J. Usary,et al.  Erythromycin inhibition of 50S ribosomal subunit formation in Escherichia coli cells , 2001, Molecular microbiology.

[68]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[69]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[70]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[71]  W. S. Champney,et al.  Evernimicin (SCH27899) Inhibits both Translation and 50S Ribosomal Subunit Formation in Staphylococcus aureusCells , 2000, Antimicrobial Agents and Chemotherapy.

[72]  M. Inouye,et al.  Era, an essential Escherichia coli small G-protein, binds to the 30S ribosomal subunit. , 1999, Biochemical and biophysical research communications.

[73]  K. Mortensen,et al.  Characterization of the domains of E. coli initiation factor IF2 responsible for recognition of the ribosome , 1999, FEBS letters.

[74]  M. Deutscher,et al.  RNase G (CafA protein) and RNase E are both required for the 5′ maturation of 16S ribosomal RNA , 1999, The EMBO journal.

[75]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[76]  J. Lupski,et al.  Cell cycle arrest in Era GTPase mutants: a potential growth rate‐regulated checkpoint in Escherichia coli , 1998, Molecular microbiology.

[77]  W. S. Champney,et al.  Azithromycin and Clarithromycin Inhibition of 50S Ribosomal Subunit Formation in Staphylococcus aureus Cells , 1998, Current Microbiology.

[78]  H. Noller,et al.  In vitro complementation analysis localizes 23S rRNA posttranscriptional modifications that are required for Escherichia coli 50S ribosomal subunit assembly and function. , 1996, RNA.

[79]  W. S. Champney,et al.  50S ribosomal subunit synthesis and translation are equivalent targets for erythromycin inhibition in Staphylococcus aureus , 1996, Antimicrobial agents and chemotherapy.

[80]  H. Noller,et al.  Suppression of a cold-sensitive mutation in 16S rRNA by overexpression of a novel ribosome-binding factor, RbfA. , 1995, Genes & development.

[81]  J Ofengand,et al.  Four newly located pseudouridylate residues in Escherichia coli 23S ribosomal RNA are all at the peptidyltransferase center: analysis by the application of a new sequencing technique. , 1993, Biochemistry.

[82]  K. Nierhaus,et al.  The assembly of prokaryotic ribosomes. , 1991, Biochimie.

[83]  M. Inouye,et al.  Pleiotropic changes resulting from depletion of Era, an essential GTP‐binding protein in Escherichia coli , 1991, Molecular microbiology.

[84]  P. March,et al.  A GTP-binding protein (Era) has an essential role in growth rate and cell cycle control in Escherichia coli , 1991, Journal of bacteriology.

[85]  J. Hershey,et al.  An eIF-4A-like protein is a suppressor of an Escherichia coli mutant defective in 50S ribosomal subunit assembly , 1988, Nature.

[86]  D. Schlessinger,et al.  Ordered processing of Escherichia coli 23S rRNA in vitro. , 1985, Nucleic acids research.

[87]  K. Nierhaus,et al.  Assembly map of the large subunit (50S) of Escherichia coli ribosomes. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[88]  K. Isono,et al.  Ribosomal protein modification in Escherichia coli. I. A mutant lacking the N-terminal acetylation of protein S5 exhibits thermosensitivity. , 1979, Journal of molecular biology.

[89]  D. Apirion,et al.  Identification of a novel RNA molecule in a new RNA processing mutant of Escherichia coli which contains 5 S rRNA sequences. , 1979, The Journal of biological chemistry.

[90]  S. R. Kushner,et al.  Conditionally lethal ribosomal protein mutants: characterization of a locus required for modification of 50S subunit proteins. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[91]  J. Steitz,et al.  The 30 S ribosomal precursor RNA from Escherichia coli. A primary transcript containing 23 S, 16 S, and 5 S sequences. , 1975, The Journal of biological chemistry.

[92]  L. Lindahl Intermediates and time kinetics of the in vivo assembly of Escherichia coli ribosomes. , 1975, Journal of molecular biology.

[93]  F. Dohme,et al.  Total reconstitution of functionally active 50S ribosomal subunits from Escherichia coli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[94]  D. Schlessinger,et al.  A role for ribonuclease 3 in processing of ribosomal ribonucleic acid and messenger ribonucleic acid precursors in Escherichia coli. , 1973, The Journal of biological chemistry.

[95]  L. Lindahl Two new ribosomal precursor particles in E. coli. , 1973, Nature: New biology.

[96]  M. Nomura,et al.  Assembly Mapping of 30S Ribosomal Proteins from E. coli , 1970, Nature.

[97]  P. Traub,et al.  Structure and function of Escherichia coli ribosomes. VI. Mechanism of assembly of 30 s ribosomes studied in vitro. , 1969, Journal of molecular biology.

[98]  J. Ingraham,et al.  Cold-sensitive Mutations in Salmonella typhimurium Which Affect Ribosome Synthesis , 1969, Journal of bacteriology.

[99]  D. Söll,et al.  Structure and function of Escherichia coli ribosomes. II. Translational fidelity and efficiency in protein synthesis of a protein-deficient subribosomal particle. , 1968, Journal of molecular biology.

[100]  J. Forchhammer,et al.  The synthesis and function of ribosomes in a new mutant of Escherichia coli. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[101]  M. Nomura,et al.  Reconstitution of functionally active ribosomes from inactive subparticles and proteins. , 1966, Proceedings of the National Academy of Sciences of the United States of America.

[102]  A. Tissières,et al.  Ribonucleoprotein Particles from Escherichia Coli , 1958, Nature.