Spin Fluctuation-Induced Superconductivity in Organic Compounds

[1]  E. Dagotto,et al.  Indications of Unconventional Superconductivity in Doped and Undoped Triangular Antiferromagnets , 1998, cond-mat/9807168.

[2]  T. Moriya,et al.  Spin Fluctuation-Induced Superconductivity in Organic Compounds , 1998, cond-mat/9807322.

[3]  H. Kino,et al.  Phase diagram of superconductivity on the anisotropic triangular lattice Hubbard model : An effective model of κ-(BEDT-TTF) salts , 1998, cond-mat/9807147.

[4]  J. Schmalian Pairing due to Spin Fluctuations in Layered Organic Superconductors , 1998, cond-mat/9807042.

[5]  H. Kontani,et al.  Electronic Properties of the Trellis-Lattice Hubbard Model: Pseudogap and Superconductivity , 1998 .

[6]  T. Takimoto,et al.  Theory of Spin Fluctuation-Induced Superconductivity Based on a d- p Model , 1997, cond-mat/9806009.

[7]  K. Kanoda Electron correlation, metal-insulator transition and superconductivity in quasi-2D organic systems, (ET)2X , 1997 .

[8]  P. Monthoux Vertex corrections and two-loop pairing potential in nearly antiferromagnetic Fermi liquids , 1997 .

[9]  S. Fujimoto,et al.  Electronic Structure and Transition Temperature of the d- p Model , 1997 .

[10]  H. Fukuyama,et al.  Phase Diagram of Two-Dimensional Organic Conductors: (BEDT-TTF) 2X , 1996 .

[11]  Kawamoto,et al.  NMR relaxation rate in the superconducting state of the organic conductor kappa -(BEDT-TTF)2Cu , 1996, Physical review. B, Condensed matter.

[12]  Lenoir,et al.  Superconducting state of kappa -(ET)2CUBr studied by 13C NMR: Evidence for vortex-core-induced nuclear relaxation and unconventional pairing. , 1995, Physical review letters.

[13]  C. Slichter,et al.  {sup 13}C NMR studies of the normal and superconducting states of the organic superconductor {kappa}-(ET){sub 2}Cu[N(CN){sub 2}]Br , 1995 .

[14]  Dahm,et al.  Physical quantities in nearly antiferromagnetic and superconducting states of the two-dimensional Hubbard model and comparison with cuprate superconductors. , 1995, Physical review. B, Condensed matter.

[15]  N. E. Bickers,et al.  Superconductivity in the two-dimensional Hubbard model: One-particle correlation functions. , 1995, Physical review. B, Condensed matter.

[16]  Langer,et al.  Theory for the excitation spectrum of high-Tc superconductors: quasiparticle dispersion and shadows of the Fermi surface. , 1995, Physical review letters.

[17]  Kawamoto,et al.  13C NMR Study of Layered Organic Superconductors Based on BEDT-TTF Molecules. , 1995, Physical review letters.

[18]  C. Lenoir,et al.  13C NMR Study of a Quasi-Two-Dimensional Organic Superconductor ?-(ET)2Cu[N(CN)2]Br , 1994 .

[19]  N. E. Bickers,et al.  Anisotropic superconductivity in the 2D Hubbard model: Gap function and interaction weight. , 1994, Physical review letters.

[20]  White,et al.  Conserving approximations for strongly correlated electron systems: Bethe-Salpeter equation and dynamics for the two-dimensional Hubbard model. , 1989, Physical review letters.

[21]  Oshima,et al.  Shubnikov-de Haas effect and the Fermi surface in an ambient-pressure organic superconductor , 1988, Physical review. B, Condensed matter.

[22]  T. Moriya The Effect of Electron-Electron Interaction on the Nuclear Spin Relaxation in Metals , 1963 .