Gluing resource proof-structures: inhabitation and inverting the Taylor expansion

A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a set of resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing those sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-structure, through a rewriting system acting both on resource and MELL proof-structures. As a consequence, we prove also the semi-decidability of the type inhabitation problem for MELL proof-structures.

[1]  Michel Parigot,et al.  Lambda-Mu-Calculus: An Algorithmic Interpretation of Classical Natural Deduction , 1992, LPAR.

[2]  Thomas Ehrhard,et al.  Differential Interaction Nets , 2005, WoLLIC.

[3]  Thomas Ehrhard,et al.  Uniformity and the Taylor expansion of ordinary lambda-terms , 2008, Theor. Comput. Sci..

[4]  Vincent Danos,et al.  Proof-nets and the Hilbert space , 1995 .

[5]  Yves Lafont,et al.  Interaction nets , 1989, POPL '90.

[6]  Michele Pagani,et al.  Strong Normalizability as a Finiteness Structure via the Taylor Expansion of \lambda λ -terms , 2016, FoSSaCS.

[7]  Michele Pagani,et al.  A characterization of the Taylor expansion of lambda-terms , 2013, CSL.

[8]  Daniel de Carvalho The Relational Model Is Injective for Multiplicative Exponential Linear Logic , 2016, CSL.

[9]  Thomas Ehrhard,et al.  On Köthe sequence spaces and linear logic , 2002, Mathematical Structures in Computer Science.

[10]  Giulio Manzonetto,et al.  Taylor subsumes Scott, Berry, Kahn and Plotkin , 2019, Proc. ACM Program. Lang..

[11]  Paolo Tranquilli,et al.  Intuitionistic differential nets and lambda-calculus , 2011, Theor. Comput. Sci..

[12]  Thomas Ehrhard,et al.  Finiteness spaces , 2005, Mathematical Structures in Computer Science.

[13]  Giulio Manzonetto,et al.  Revisiting Call-by-value Bohm trees in light of their Taylor expansion , 2018, Log. Methods Comput. Sci..

[14]  Thomas Ehrhard,et al.  Böhm Trees, Krivine's Machine and the Taylor Expansion of Lambda-Terms , 2006, CiE.

[15]  Pierre Boudes,et al.  Thick Subtrees, Games and Experiments , 2009, TLCA.

[16]  Denis Béchet,et al.  Minimality of the correctness criterion for multiplicative proof nets , 1998, Mathematical Structures in Computer Science.

[17]  Lorenzo Tortora de Falco,et al.  The relational model is injective for multiplicative exponential linear logic (without weakenings) , 2010, Ann. Pure Appl. Log..

[18]  Christine Tasson,et al.  SéMantiques et Syntaxes vectorielles de la logique LinéAIRE. (Vectorial Semantics and Syntax of Linear Logic) , 2009 .

[19]  Christian Retoré A Semantic Characterisation of the Correctness of a Proof Net , 1997, Math. Struct. Comput. Sci..

[20]  Gérard Boudol,et al.  The Lambda-Calculus with Multiplicities (Abstract) , 1993, CONCUR.

[21]  Michele Pagani,et al.  The Inverse Taylor Expansion Problem in Linear Logic , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[22]  Daniel de Carvalho,et al.  Taylor expansion in linear logic is invertible , 2017, Log. Methods Comput. Sci..

[23]  Lionel Vaux,et al.  Taylor Expansion, lambda-Reduction and Normalization , 2017, CSL.

[24]  Laurent Regnier,et al.  The differential lambda-calculus , 2003, Theor. Comput. Sci..

[25]  Michele Pagani,et al.  The Cut-Elimination Theorem for Differential Nets with Promotion , 2009, TLCA.

[26]  Yu. I. Manin,et al.  Generalized Operads and Their Inner Cohomomorphisms , 2006 .

[27]  Giulio Manzonetto,et al.  Relational Graph Models, Taylor Expansion and Extensionality , 2014, MFPS.

[28]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..