An implicit δf particle-in-cell method with sub-cycling and orbit averaging for Lorentz ions
暂无分享,去创建一个
Yang Chen | Scott E. Parker | Benjamin J. Sturdevant | Benjamin B. Hause | Yang Chen | S. Parker | B. Sturdevant
[1] D. C. Barnes,et al. A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes , 2013, J. Comput. Phys..
[2] R. P. Freis,et al. Stability and application of an orbit-averaged magneto-inductive particle code , 1982 .
[3] Burton D. Fried,et al. The Plasma Dispersion Function , 1961 .
[4] D. Schnack,et al. Comparison of kinetic and extended magnetohydrodynamics computational models for the linear ion temperature gradient instability in slab geometry , 2013 .
[5] Scott E. Parker,et al. Multi-scale particle-in-cell plasma simulation , 1991 .
[6] Bruce I. Cohen,et al. Orbit-averaged implicit particle codes , 1982 .
[7] Michael C. Huang,et al. Particle-in-cell simulations with charge-conserving current deposition on graphic processing units , 2010, J. Comput. Phys..
[8] W. Lee,et al. Partially linearized algorithms in gyrokinetic particle simulation , 1993 .
[9] E. Frieman,et al. Nonlinear gyrokinetic equations for low-frequency electromagnetic waves in general plasma equilibria , 1981 .
[10] S. Parker,et al. A fully nonlinear characteristic method for gyrokinetic simulation , 1993 .
[11] Viktor K. Decyk,et al. Adaptable Particle-in-Cell algorithms for graphical processing units , 2010, Comput. Phys. Commun..
[12] Yang Chen,et al. Particle-in-cell simulation with Vlasov ions and drift kinetic electrons , 2009 .
[13] A. Dimits. Gyrokinetic equations for strong-gradient regions , 2011, 1108.6327.
[14] Scott E. Parker,et al. Finite time step and spatial grid effects in δf simulation of warm plasmas , 2016, J. Comput. Phys..
[15] Luis Chacón,et al. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..
[16] Luis Chacón,et al. Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations , 2013, J. Comput. Phys..
[17] Yang Chen,et al. A second-order semi-implicit δfδf method for hybrid simulation , 2013, J. Comput. Phys..
[18] C. Birdsall,et al. Plasma Physics via Computer Simulation , 2018 .
[19] Scott E. Parker,et al. Bounded multi-scale plasma simulation: application to sheath problems , 1993 .
[20] J. Schmitt. Dispersion and Cyclotron Damping of Pure Ion Bernstein Waves , 1973 .
[21] T. A. Brengle,et al. An orbit averaged particle code , 1980 .
[22] Luis Chacón,et al. An efficient mixed-precision, hybrid CPU-GPU implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm , 2011, J. Comput. Phys..
[23] A. Aydemir. A unified Monte Carlo interpretation of particle simulations and applications to non-neutral plasmas , 1994 .
[24] Lu Wang,et al. Fully electromagnetic nonlinear gyrokinetic equations for tokamak edge turbulence , 2008 .
[25] N. A. Krall,et al. Principles of Plasma Physics , 1973 .
[26] A. David Wunsch. Complex variables with applications , 1983 .
[27] Alain J. Brizard,et al. Nonlinear gyrokinetic Vlasov equation for toroidally rotating axisymmetric tokamaks , 1995 .
[28] W. Tang,et al. Nonlinear electromagnetic gyrokinetic equations for rotating axisymmetric plasmas , 1994 .
[29] I. Bernstein,et al. Waves in a Plasma in a Magnetic Field , 1958 .
[30] C. Kelley. Iterative Methods for Linear and Nonlinear Equations , 1987 .
[31] Stefano Markidis,et al. The energy conserving particle-in-cell method , 2011, J. Comput. Phys..
[32] Viktor K. Decyk,et al. Particle-in-Cell algorithms for emerging computer architectures , 2014, Comput. Phys. Commun..
[33] G. Hu,et al. Generalized weighting scheme for δf particle‐simulation method , 1994 .