Fast Solvers for Cahn-Hilliard Inpainting

The solution of Cahn--Hilliard variational inequalities is of interest in many applications. We discuss the use of them as a tool for binary image inpainting. This has been done before using double-well potentials but not for nonsmooth potentials as considered here. The existing bound constraints are incorporated via the Moreau--Yosida regularization technique. We develop effective preconditioners for the efficient solution of the Newton steps associated with the fast solution of the Moreau--Yosida regularized problem. Numerical results illustrate the efficiency of our approach. Moreover, precise eigenvalue intervals are given for the preconditioned system using a double-well potential. A comparison between the smooth and nonsmooth Cahn--Hilliard inpainting models shows that the latter achieves better results.

[1]  D FalgoutRobert An Introduction to Algebraic Multigrid , 2006 .

[2]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[3]  B. Vollmayr-Lee,et al.  Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[5]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[6]  Andrew J. Wathen,et al.  A new approximation of the Schur complement in preconditioners for PDE‐constrained optimization , 2012, Numer. Linear Algebra Appl..

[7]  Charles M. Elliott,et al.  On the Cahn-Hilliard equation , 1986 .

[8]  Tony F. Chan,et al.  Total Variation Wavelet Inpainting , 2006, Journal of Mathematical Imaging and Vision.

[9]  Charles M. Elliott,et al.  Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy , 1992 .

[10]  Michael Ulbrich,et al.  Semismooth Newton Methods for Operator Equations in Function Spaces , 2002, SIAM J. Optim..

[11]  Xiang-fa Wu,et al.  Phase-field modeling of the formation of lamellar nanostructures in diblock copolymer thin films under inplanar electric fields. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  A. Bertozzi,et al.  Unconditionally stable schemes for higher order inpainting , 2011 .

[13]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[14]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[15]  張育晟,et al.  Navier-Stokes 方程组弱解的存在性 , 2011 .

[16]  Martin Stoll,et al.  Fast Iterative Solution of Reaction-Diffusion Control Problems Arising from Chemical Processes , 2013, SIAM J. Sci. Comput..

[17]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[18]  Peter Benner,et al.  Fast Solvers for Cahn-Hilliard Variational Inequalities , 2013 .

[19]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[20]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[21]  D. Mumford Elastica and Computer Vision , 1994 .

[22]  Tony F. Chan,et al.  Non-texture inpainting by curvature-driven diffusions (CDD) , 2001 .

[23]  Charles M. Elliott,et al.  The Cahn-Hilliard Model for the Kinetics of Phase Separation , 1989 .

[24]  John E. Hilliard,et al.  An Evaluation of Procedures in Quantitative Metallography for Volume‐Fraction Analysis , 2013 .

[25]  Peter Benner,et al.  Fast solution of Cahn-Hilliard variational inequalities using implicit time discretization and finite elements , 2014, J. Comput. Phys..

[26]  Charles M. Elliott,et al.  The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy Part II: Numerical analysis , 1991, European Journal of Applied Mathematics.

[27]  Bath Ba THE GLOBAL DYNAMICS OF DISCRETE SEMILINEAR PARABOLIC EQUATIONS , 1993 .

[28]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy and Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid , 2013 .

[29]  Andrea L. Bertozzi,et al.  Analysis of a Two-Scale Cahn-Hilliard Model for Binary Image Inpainting , 2007, Multiscale Model. Simul..

[30]  Andrea L. Bertozzi,et al.  A Wavelet-Laplace Variational Technique for Image Deconvolution and Inpainting , 2008, IEEE Transactions on Image Processing.

[31]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[32]  Guillermo Sapiro,et al.  Navier-stokes, fluid dynamics, and image and video inpainting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[33]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[34]  Lin He,et al.  Cahn--Hilliard Inpainting and a Generalization for Grayvalue Images , 2009, SIAM J. Imaging Sci..

[35]  Michael Ulbrich,et al.  A mesh-independence result for semismooth Newton methods , 2004, Math. Program..

[36]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[37]  T. Chan,et al.  Variational image inpainting , 2005 .

[38]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[39]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[40]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[41]  Martin Stoll,et al.  Regularization-Robust Preconditioners for Time-Dependent PDE-Constrained Optimization Problems , 2012, SIAM J. Matrix Anal. Appl..

[42]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[43]  A. Wathen,et al.  FAST ITERATIVE SOLVERS FOR CONVECTION-DIFFUSION CONTROL PROBLEMS ∗ , 2013 .

[44]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[45]  Wolfgang Hackbusch,et al.  Multi-grid methods and applications , 1985, Springer series in computational mathematics.

[46]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[47]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[48]  Stefano Finzi Vita,et al.  Area-preserving curve-shortening flows: from phase separation to image processing , 2002 .

[49]  Tony F. Chan,et al.  Variational Restoration of Nonflat Image Features: Models and Algorithms , 2001, SIAM J. Appl. Math..

[50]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[51]  R.D. Falgout,et al.  An Introduction to Algebraic Multigrid Computing , 2006, Computing in Science & Engineering.

[52]  Stanley Osher,et al.  Total variation based image restoration with free local constraints , 1994, Proceedings of 1st International Conference on Image Processing.

[53]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[54]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[55]  Mark Frederick Hoemmen,et al.  An Overview of Trilinos , 2003 .

[56]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[57]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[58]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .

[59]  R. Fletcher Conjugate gradient methods for indefinite systems , 1976 .

[60]  Harald Garcke,et al.  Mechanical Effects in the Cahn-Hilliard Model: A Review on Mathematical Results , 2005 .

[61]  Moulay Hicham Tber,et al.  An adaptive finite-element Moreau–Yosida-based solver for a non-smooth Cahn–Hilliard problem , 2011, Optim. Methods Softw..