Linear model analysis of categorical data with incomplete response vectors.

The general linear model approach to the analysis of categorical data described by Grizzle et al. [1969] is extended to situations where: (1) missing data for certain individuals arise at random as a result of non-response or deleted incorrect response; (2) supplemental samples pertaining to various subsets of variables have been obtained due to cost considerations and/or special interest in these variables. The problems discussed are distinct from those involving 'incomplete contingency tables' containing a priori empty cells. The extension is presented through a series of examples which show how the approach can be used to handle a wide variety of non-standard data configurations. Applications to categorical data mixed models and split plot designs are emphasized.

[1]  Stephen E. Fienberg,et al.  The Analysis of Multidimensional Contingency Tables , 1970 .

[2]  S. Blumenthal Multinomial Sampling With Partially Categorized Data , 1968 .

[3]  L. A. Goodman Partitioning of Chi-Square, Analysis of Marginal Contingency Tables, and Estimation of Expected Frequencies in Multidimensional Contingency Tables , 1971 .

[4]  N Mantel,et al.  Models for complex contingency tables and polychotomous dosage response curves. , 1966, Biometrics.

[5]  Y. Bishop Effects of collapsing multidimensional contingency tables. , 1971, Biometrics.

[6]  L. A. Goodman The Multivariate Analysis of Qualitative Data: Interactions among Multiple Classifications , 1970 .

[7]  R. Potthoff,et al.  A generalized multivariate analysis of variance model useful especially for growth curve problems , 1964 .

[8]  R. R. Hocking,et al.  Estimation of Parameters in the Multivariate Normal Distribution with Missing Observations , 1968 .

[9]  D. W. Gaylor,et al.  Augmenting Existing Data in Multiple Regression , 1968 .

[10]  Gary G. Koch,et al.  Hypotheses Of ‘No Interaction’ In Multi-dimensional Contingency Tables , 1968 .

[11]  R. R. Hocking,et al.  The analysis of incomplete data. , 1971 .

[12]  A. Wald Tests of statistical hypotheses concerning several parameters when the number of observations is large , 1943 .

[13]  S. Kullback,et al.  Symmetry and Marginal Homogeneity of an r×r Contingency Table , 1969 .

[14]  D. M. Allen,et al.  Analysis of growth and dose response curves. , 1969, Biometrics.

[15]  C. Daniel Sequences of Fractional Replicates in the 2 p–q Series , 1962 .

[16]  S. Fienberg,et al.  Incomplete two-dimensional contingency tables. , 1969, Biometrics.

[17]  L. A. Goodman The Analysis of Multidimensional Contingency Tables: Stepwise Procedures and Direct Estimation Methods for Building Models for Multiple Classifications , 1971 .

[18]  Abdelmonem A. Afifi,et al.  Missing Observations in Multivariate Statistics—IV: A Note on Simple Linear Regression , 1969 .

[19]  Sidney Addelman,et al.  Sequences of Two-Level Fractional Factorial Plans , 1969 .

[20]  Gary G. Koch,et al.  Linear models analysis of incomplete multivariate categorical data , 1972 .

[21]  V. P. Bhapkar Categorical data analogs for some multivariate tests , 1965 .

[22]  V. P. Bhapkar A Note on the Equivalence of Two Test Criteria for Hypotheses in Categorical Data , 1966 .

[23]  D. Reinfurt The analysis of categorical data with supplemented margins including applications to mixed models , 1970 .

[24]  W. G. Cochran The comparison of percentages in matched samples. , 1950, Biometrika.

[25]  J. Berkson Maximum Likelihood and Minimum x 2 Estimates of the Logistic Function , 1955 .

[26]  D. Kleinbaum Estimation and hypothesis testing for generalized multivariate linear models , 1970 .

[27]  Y. Bishop,et al.  Full Contingency Tables, Logits, and Split Contingency Tables , 1969 .

[28]  L. A. Goodman The Analysis of Cross-Classified Data: Independence, Quasi-Independence, and Interactions in Contingency Tables with or without Missing Entries , 1968 .

[29]  S. Fienberg An Iterative Procedure for Estimation in Contingency Tables , 1970 .

[30]  J. Lewis,et al.  A Program to Fit Constants to Multiway Tables of Quantitative and Quantal Data , 1968 .

[31]  Abdelmonem A. Afifi,et al.  Missing Observations in Multivariate Statistics III: Large Sample Analysis of Simple Linear Regression , 1969 .

[32]  G. Koch,et al.  The analysis of categorical data from mixed models , 1971 .

[33]  G. Koch,et al.  Analysis of categorical data by linear models. , 1969, Biometrics.

[34]  R. Elashoff,et al.  Missing Observations in Multivariate Statistics I. Review of the Literature , 1966 .

[35]  G. Box,et al.  On the Experimental Attainment of Optimum Conditions , 1951 .

[36]  R. R. Hocking,et al.  Maximum Likelihood Estimation with Incomplete Multinomial Data , 1971 .

[37]  Gary G. Koch,et al.  On the Hypotheses of 'No Interaction' in Contingency Tables , 1968 .

[38]  Marvin A. Kastenbaum,et al.  On the Hypothesis of No "Interaction" In a Multi-way Contingency Table , 1956 .

[39]  A. Stuart A TEST FOR HOMOGENEITY OF THE MARGINAL DISTRIBUTIONS IN A TWO-WAY CLASSIFICATION , 1955 .

[40]  Robert M. Elashoff,et al.  Missing Observations in Multivariate Statistics II. Point Estimation in Simple Linear Regression , 1967 .

[41]  H. D. Patterson,et al.  Analysis of Factorial Arrangements when the Data are Proportions , 1952 .