DNA microarray gene expression analysis technology and its application to neurological disorders

DNA microarray technology is currently an area of great interest. Also called “genechip” technology, it incorporates molecular genetics and computer science on a massive scale. This technology can rapidly provide a detailed view of the simultaneous expression of entire genomes and provide new insights into gene function, disease pathophysiology, disease classification, and drug development. In this review, the author discusses the basic theory behind genechip and other biologic chip technologies, their limitations given the current state of biologic knowledge and computational abilities, and their potential applications to the understanding of neurologic disorders.

[1]  A. Butte,et al.  Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  E. Lander Array of hope , 1999, Nature Genetics.

[3]  H. Döhner,et al.  Correlation of clinical data with proteomics profiles in 24 patients with B‐cell chronic lymphocytic leukemia , 2001, International journal of cancer.

[4]  Scott A. Rifkin,et al.  Microarray analysis of Drosophila development during metamorphosis. , 1999, Science.

[5]  M. Mann,et al.  Proteomics to study genes and genomes , 2000, Nature.

[6]  S. Nelson,et al.  Detection of differentially expressed genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization. , 1998, Nucleic acids research.

[7]  A. Roses Pharmacogenetics and the practice of medicine , 2000, Nature.

[8]  Michael L. Bittner,et al.  cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. , 1999 .

[9]  R. Stoughton,et al.  Experimental annotation of the human genome using microarray technology , 2001, Nature.

[10]  N. Sampas,et al.  Molecular classification of cutaneous malignant melanoma by gene expression profiling , 2000, Nature.

[11]  M Schena,et al.  Microarrays: biotechnology's discovery platform for functional genomics. , 1998, Trends in biotechnology.

[12]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Richard Weindruch,et al.  Gene-expression profile of the ageing brain in mice , 2000, Nature Genetics.

[14]  E. Thomson,et al.  The Ethical, Legal, and Social Implications Research Program at the National Human Genome Research Institute , 1997, Kennedy Institute of Ethics journal.

[15]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[16]  G. Schoolnik,et al.  Comparative genomics of BCG vaccines by whole-genome DNA microarray. , 1999, Science.

[17]  M. Bittner,et al.  Expression profiling using cDNA microarrays , 1999, Nature Genetics.

[18]  J. Trent,et al.  Analysis of gene expression in multiple sclerosis lesions using cDNA microarrays , 1999 .

[19]  D. Botstein,et al.  A gene expression database for the molecular pharmacology of cancer , 2000, Nature Genetics.

[20]  P. Goodfellow,et al.  DNA microarrays in drug discovery and development , 1999, Nature Genetics.

[21]  M. Relling,et al.  Pharmacogenomics: translating functional genomics into rational therapeutics. , 1999, Science.

[22]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[23]  W D Graf,et al.  Can bioinformatics help trace the steps from gene mutation to disease? , 2000, Neurology.

[24]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Stephen K. Burley,et al.  An overview of structural genomics , 2000, Nature Structural Biology.

[26]  E. Wolski,et al.  Normalization strategies for cDNA microarrays. , 2000, Nucleic acids research.

[27]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Michael L. Bittner,et al.  cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene , 1999, Nature Genetics.

[29]  G. Riggins,et al.  Large-scale serial analysis of gene expression reveals genes differentially expressed in ovarian cancer. , 2000, Cancer research.

[30]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[31]  M. Eisen,et al.  Gene expression informatics —it's all in your mine , 1999, Nature Genetics.

[32]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[33]  G. Church,et al.  RNA expression analysis using a 30 base pair resolution Escherichia coli genome array , 2000, Nature Biotechnology.

[34]  S. P. Fodor,et al.  High density synthetic oligonucleotide arrays , 1999, Nature Genetics.

[35]  J. Hacia Resequencing and mutational analysis using oligonucleotide microarrays , 1999, Nature Genetics.