Regular and Irregular Correspondences

[1]  Kin’ya Takahashi Wigner and Husimi Functions in Quantum Mechanics , 1986 .

[2]  P. Dirac The Adiabatic Invariance of the Quantum Integrals , 1925 .

[3]  S. Rice,et al.  The influence of quantization on the onset of chaos in Hamiltonian systems: The Kolmogorov entropy interpretation , 1981 .

[4]  Adiabatic invariance in the standard map , 1987 .

[5]  C. W. Patterson Quantum and semiclassical description of a triply degenerate anharmonic oscillator , 1985 .

[6]  W. Reinhardt Calculation of the VIB-rotational state density of polyatomic molecules by adiabatic switching , 1990 .

[7]  P. Ehrenfest XLVIII. Adiabatic invariants and the theory of quanta , 1917 .

[8]  E. Wigner On the quantum correction for thermodynamic equilibrium , 1932 .

[9]  Grebogi,et al.  Ergodic adiabatic invariants of chaotic systems. , 1987, Physical review letters.

[10]  B. Chirikov A universal instability of many-dimensional oscillator systems , 1979 .

[11]  mth-order adiabatic invariance for quantum systems , 1966 .

[12]  B. R. Johnson On the adiabatic invariance method of calculating semiclassical eigenvalues , 1985 .

[13]  I. Percival,et al.  Hamiltonian maps in the complex plane , 1981 .

[14]  B. Dorizzi,et al.  Painlevé Conjecture Revisited , 1982 .

[15]  Heller,et al.  Semiclassical dynamics of chaotic motion: Unexpected long-time accuracy. , 1991, Physical review letters.

[16]  W. Reinhardt,et al.  Variational path optimization and upper and lower bounds to free energy changes via finite time minimization of external work , 1992 .

[17]  M. Gell-Mann,et al.  Bound States in Quantum Field Theory , 1951 .

[18]  Donald W. Noid,et al.  Quasiperiodic and stochastic behavior in molecules , 1981 .

[19]  E. Ott Goodness of ergodic adiabatic invariants , 1979 .

[20]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[21]  M. Hénon Numerical study of quadratic area-preserving mappings , 1969 .

[22]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[23]  Young S. Kim,et al.  The physics of phase space : nonlinear dynamics and chaos, geometric quantization, and Wigner function : proceedings of the First International Conference on the Physics of Phase Space, held at the University of Maryland, College Park, Maryland, May 20-23, 1986 , 1987 .

[24]  R. T. Skodje,et al.  The semiclassical quantization of nonseparable systems using the method of adiabatic switching , 1985 .