Microscopic model for fracture of crystalline Si nanopillars during lithiation

[1]  Eric P. Holowka,et al.  Thin-Film Materials , 2014 .

[2]  Zhigang Suo,et al.  Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries. , 2013, Nano letters.

[3]  Yang Liu,et al.  Tough germanium nanoparticles under electrochemical cycling. , 2013, ACS nano.

[4]  Yi Cui,et al.  Reaction Front Evolution during Electrochemical Lithiation of Crystalline Silicon Nanopillars , 2012 .

[5]  Yi Cui,et al.  Studying the Kinetics of Crystalline Silicon Nanoparticle Lithiation with In Situ Transmission Electron Microscopy , 2012, Advanced materials.

[6]  Z. Suo,et al.  Kinetics of initial lithiation of crystalline silicon electrodes of lithium-ion batteries. , 2012, Nano letters.

[7]  Huajian Gao,et al.  Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands , 2012 .

[8]  M. Stanley Whittingham,et al.  History, Evolution, and Future Status of Energy Storage , 2012, Proceedings of the IEEE.

[9]  Jian Yu Huang,et al.  Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. , 2012, Nano letters.

[10]  Yi Cui,et al.  Fracture of crystalline silicon nanopillars during electrochemical lithium insertion , 2012, Proceedings of the National Academy of Sciences.

[11]  Jian Yu Huang,et al.  Size-dependent fracture of silicon nanoparticles during lithiation. , 2011, ACS nano.

[12]  E. Kaxiras,et al.  Concurrent Reaction and Plasticity during Initial Lithiation of Crystalline Silicon in Lithium-Ion Batteries , 2012 .

[13]  Yi Cui,et al.  Size-dependent fracture of Si nanowire battery anodes , 2011 .

[14]  G. Yushin,et al.  Ex-situ depth-sensing indentation measurements of electrochemically produced Si-Li alloy films , 2011 .

[15]  V Srinivasan,et al.  Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. , 2011, Physical review letters.

[16]  Brandon R. Long,et al.  Strain Anisotropies and Self‐Limiting Capacities in Single‐Crystalline 3D Silicon Microstructures: Models for High Energy Density Lithium‐Ion Battery Anodes , 2011 .

[17]  Yang Liu,et al.  Anisotropic swelling and fracture of silicon nanowires during lithiation. , 2011, Nano letters.

[18]  Yi Cui,et al.  Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. , 2011, Nano letters.

[19]  Yi Cui,et al.  Anomalous shape changes of silicon nanopillars by electrochemical lithiation. , 2011, Nano letters.

[20]  J. Tarascon,et al.  Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms. , 2011, Journal of the American Chemical Society.

[21]  Venkat Srinivasan,et al.  In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation , 2010, 1108.0647.

[22]  J. Rogers,et al.  Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. , 2010, Nano letters.

[23]  Candace K. Chan,et al.  Stepwise nanopore evolution in one-dimensional nanostructures. , 2010, Nano letters.

[24]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[25]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[26]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[27]  T. Takamura,et al.  A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life , 2004 .

[28]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[29]  Kevin W. Eberman,et al.  Colossal Reversible Volume Changes in Lithium Alloys , 2001 .

[30]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[31]  K. Saraswat,et al.  Two-dimensional thermal oxidation of silicon—I. Experiments , 1987, IEEE Transactions on Electron Devices.

[32]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[33]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[34]  J. Rice A path-independent integral and the approximate analysis of strain , 1968 .

[35]  J. Wortman,et al.  Young's Modulus, Shear Modulus, and Poisson's Ratio in Silicon and Germanium , 1965 .

[36]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[37]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[38]  R. Hill The mathematical theory of plasticity , 1950 .