Sieve bootstrap for functional time series

A bootstrap procedure for functional time series is proposed which exploits a general vector autoregressive representation of the time series of Fourier coefficients appearing in the Karhunen-Lo\`eve expansion of the functional process. A double sieve-type bootstrap method is developed which avoids the estimation of process operators and generates functional pseudo-time series that appropriately mimic the dependence structure of the functional time series at hand. The method uses a finite set of functional principal components to capture the essential driving parts of the infinite dimensional process and a finite order vector autoregressive process to imitate the temporal dependence structure of the corresponding vector time series of Fourier coefficients. By allowing the number of functional principal components as well as the autoregressive order used to increase to infinity (at some appropriate rate) as the sample size increases, a basic bootstrap central limit theorem is established which shows validity of the bootstrap procedure proposed for functional finite Fourier transforms. Some numerical examples illustrate the good finite sample performance of the new bootstrap method proposed.

[1]  D. Politis,et al.  On the range of validity of the autoregressive sieve bootstrap , 2012, 1201.6211.

[2]  M. Wendler,et al.  Sequential block bootstrap in a Hilbert space with application to change point analysis , 2014, 1412.0446.

[3]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[4]  Siegfried Hörmann,et al.  On the Prediction of Stationary Functional Time Series , 2012, 1208.2892.

[5]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[6]  P. Kokoszka,et al.  Weakly dependent functional data , 2010, 1010.0792.

[7]  Piotr Kokoszka,et al.  Inference for Functional Data with Applications , 2012 .

[8]  Germán Aneiros‐Pérez,et al.  Functional methods for time series prediction: a nonparametric approach , 2011 .

[9]  Ilse C. F. Ipsen,et al.  Perturbation Bounds for Determinants and Characteristic Polynomials , 2008, SIAM J. Matrix Anal. Appl..

[10]  Herold Dehling,et al.  Bootstrap for dependent Hilbert space-valued random variables with application to von Mises statistics , 2015, J. Multivar. Anal..

[11]  Marco Meyer,et al.  On the Vector Autoregressive Sieve Bootstrap , 2015 .

[12]  M. Pourahmadi,et al.  Baxter's inequality and convergence of finite predictors of multivariate stochastic processess , 1993 .

[13]  N. Wiener,et al.  The prediction theory of multivariate stochastic processes , 1957 .

[14]  N. Wiener,et al.  The prediction theory of multivariate stochastic processes, II , 1958 .

[15]  Siegfried Hörmann,et al.  Functional Time Series , 2012 .

[16]  Jens-Peter Kreiss,et al.  Baxter's inequality and sieve bootstrap for random fields , 2017 .

[17]  Mohsen Pourahmadi,et al.  Foundations of Time Series Analysis and Prediction Theory , 2001 .

[18]  Clément Cerovecki,et al.  On the CLT for discrete Fourier transforms of functional time series , 2015, J. Multivar. Anal..

[19]  Victor M. Panaretos,et al.  Fourier analysis of stationary time series in function space , 2013, 1305.2073.

[20]  Florence Merlevède,et al.  Sharp Conditions for the CLT of Linear Processes in a Hilbert Space , 1997 .

[21]  Timothy L. McMurry,et al.  Resampling methods for functional data , 2018, Oxford Handbooks Online.

[22]  Ron Reeder,et al.  Estimation of the mean of functional time series and a two‐sample problem , 2011, 1105.0019.

[23]  J. Franke,et al.  A residual-based bootstrap for functional autoregressions , 2019, 1905.07635.

[24]  Belén Fernández de Castro,et al.  Functional Samples and Bootstrap for Predicting Sulfur Dioxide Levels , 2005, Technometrics.

[25]  M. Hallin,et al.  Dynamic functional principal components , 2015 .

[26]  J. Merikoski,et al.  Upper bounds for singular values , 2005 .

[27]  Han Lin Shang,et al.  Forecasting functional time series , 2009 .