Continuum limits of matrix product states

We determine which translationally invariant matrix product states have a continuum limit, that is, which can be considered as discretized versions of states defined in the continuum. To do this, we analyse a fine-graining renormalization procedure in real space, characterise the set of limiting states of its flow, and find that it strictly contains the set of continuous matrix product states. We also analyse which states have a continuum limit after a finite number of a coarse-graining renormalization steps. We give several examples of states with and without the different kinds of continuum limits.

[1]  S. Szarek,et al.  An analysis of completely positive trace-preserving maps on M2 , 2002 .

[2]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[3]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[4]  S. Weinberg The Quantum Theory of Fields: AUTHOR INDEX , 1995 .

[5]  M. Lewenstein,et al.  Tensor Networks for Lattice Gauge Theories with continuous groups , 2014, 1405.4811.

[6]  J I Cirac,et al.  Continuous matrix product states for quantum fields. , 2010, Physical review letters.

[7]  S. Sachdev Quantum Phase Transitions: A first course , 1999 .

[8]  E. Fradkin,et al.  Field Theories of Condensed Matter Physics , 2013 .

[9]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[10]  U. Schollwoeck The density-matrix renormalization group , 2004, cond-mat/0409292.

[11]  G. Vidal Class of quantum many-body states that can be efficiently simulated. , 2006, Physical review letters.

[12]  Michael M. Wolf,et al.  The Complexity of Relating Quantum Channels to Master Equations , 2009, 0908.2128.

[13]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[14]  E. Lieb,et al.  Valence bond ground states in isotropic quantum antiferromagnets , 1988 .

[15]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[16]  Román Orús,et al.  Advances on tensor network theory: symmetries, fermions, entanglement, and holography , 2014, 1407.6552.

[17]  L. Infeld Quantum Theory of Fields , 1949, Nature.

[18]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[19]  J. Cirac,et al.  Dividing Quantum Channels , 2006, math-ph/0611057.

[20]  John Yuan ON THE CONSTRUCTION OF ONE-PARAMETER SEMIGROUPS IN TOPOLOGICAL SEMIGROUPS , 1976 .

[21]  David Pérez-García,et al.  Classifying quantum phases using matrix product states and projected entangled pair states , 2011 .

[22]  J. Cirac,et al.  Symmetries and boundary theories for chiral projected entangled pair states , 2014, 1405.0447.

[23]  J. Ignacio Cirac,et al.  Calculus of continuous matrix product states , 2013 .

[24]  L. V. Denisov Infinitely Divisible Markov Mappings in Quantum Probability Theory , 1989 .

[25]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[26]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[27]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[28]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[29]  David Perez-Garcia,et al.  Irreducible forms of matrix product states: Theory and applications , 2017, 1708.00029.

[30]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[31]  J I Cirac,et al.  Renormalization-group transformations on quantum states. , 2004, Physical review letters.

[32]  E. Fradkin,et al.  Field Theories of Condensed Matter Physics , 2013 .

[33]  Xiao-Gang Wen,et al.  Classification of gapped symmetric phases in one-dimensional spin systems , 2010, 1008.3745.

[34]  D. Pérez-García,et al.  PEPS as ground states: Degeneracy and topology , 2010, 1001.3807.

[35]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[36]  F. Verstraete,et al.  Entanglement renormalization for quantum fields in real space. , 2011, Physical review letters.

[37]  F. Verstraete,et al.  Continuum tensor network field states, path integral representations and spatial symmetries , 2012, New Journal of Physics.