CEC with tris(2,2′‐bipyridyl) ruthenium(II) electrochemiluminescent detection

For the first time, CEC was coupled with tris(2,2‐bipyridyl) ruthenium(II) ( Ru(bpy)  32+ electrochemiluminescence detection. Efficient CEC separations of proline, putrescine, spermidine and spermine were achieved when the pH of the mobile phase is in the range of 3.5–7.0. The optimum mobile phase for CEC separation is much less acidic than that for CZE separation, which matches better with the optimum pH for Ru(bpy)  32+ electrochemiluminescence detection and dramatically shortens the analysis time because of larger EOF at higher pH. The time for CEC separation of the polyamines is less than 12.5 min, which is about half as much as the time needed for CZE. The detection limits were 1.7, 0.2, and 0.2 μM for putrescine, spermidine, and spermine, respectively. The RSD of retention time and peak height of these polyamines were less than 0.85 and 6.1%, respectively. The column showed good long‐term stability, and the RSD of retention time is below 5% for 150 runs over one‐month use. The method was successfully used for the determination of polyamines in urine samples.

[1]  M. Richter,et al.  ECL—Electrochemical luminescence , 2007 .

[2]  S. Krishnan,et al.  Genotoxicity screening for N-nitroso compounds. Electrochemical and electrochemiluminescent detection of human enzyme-generated DNA damage from N-nitrosopyrrolidine. , 2007, Chemical communications.

[3]  Kun-Hong Lee,et al.  CE with sequential light‐emitting diode‐induced fluorescence and electro‐chemiluminescence detections for the determination of amino acids and alkaloids , 2007, Electrophoresis.

[4]  Guobao Xu,et al.  Environmentally friendly and highly sensitive ruthenium(II) tris(2,2'-bipyridyl) electrochemiluminescent system using 2-(dibutylamino)ethanol as co-reactant. , 2007, Angewandte Chemie.

[5]  Guobao Xu,et al.  Electrochemiluminescent detection based on solid-phase extraction at tris(2,2'-bipyridyl)ruthenium(II)-modified ceramic carbon electrode. , 2006, Analytical chemistry.

[6]  C. Whang,et al.  Analysis of ethambutol and methoxyphenamine by capillary electrophoresis with electrochemiluminescence detection. , 2006, Journal of chromatography. A.

[7]  Paul S. Francis,et al.  Tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence. , 2006, The Analyst.

[8]  H. Ju,et al.  Electrogenerated chemiluminescence detection of amino acids based on precolumn derivatization coupled with capillary electrophoresis separation. , 2006, Analytical chemistry.

[9]  S. Yao,et al.  Study on the enhancement of Ru(bpy)32+ electrochemiluminescence by nanogold and its application for pentoxyverine detection , 2005, Electrophoresis.

[10]  Y. Zu,et al.  Characterization of the low-oxidation-potential electrogenerated chemiluminescence of tris(2,2′-bipyridine)ruthenium(II) with tri-n-propylamine as coreactant , 2005 .

[11]  M. Galceran,et al.  Capillary electrochromatographic techniques for the analysis of biological fluids , 2005 .

[12]  Joseph Wang,et al.  Electrochemical Detection for Capillary Electrophoresis Microchips: A Review , 2005 .

[13]  Hongyuan Chen,et al.  Tris(2,2'‐bipyridyl)ruthenium(II)‐zirconia‐Nafion composite films applied as solid‐state electrochemiluminescence detector for capillary electrophoresis , 2005, Electrophoresis.

[14]  K. Fukunaga,et al.  Simultaneous determination of free and N-acetylated polyamines in urine by semimicro high-performance liquid chromatography using 4-(5,6-dimethoxy-2-phthalimidinyl)-2-methoxyphenylsulfonyl chloride as a fluorescent labeling reagent. , 2005, Analytical biochemistry.

[15]  E. Wang,et al.  Capillary electrophoresis coupling with electrochemiluminescence detection: a review , 2005 .

[16]  M. Bedair,et al.  Recent advances in polymeric monolithic stationary phases for electrochromatography in capillaries and chips , 2004, Electrophoresis.

[17]  R. Wightman,et al.  Rate-determining step in the electrogenerated chemiluminescence from tertiary amines with tris(2,2'-bipyridyl)ruthenium(II) , 2004 .

[18]  David J. Fischer,et al.  Recent developments in electrochemical detection for microchip capillary electrophoresis , 2004, Electrophoresis.

[19]  D. Fries,et al.  Sol-gel stationary phases for capillary electrochromatography. , 2004, Journal of chromatography. A.

[20]  J. Glennon,et al.  Recent highlights in stationary phase design for open-tubular capillary electrochromatography. , 2004, Journal of chromatography. A.

[21]  Erkang Wang,et al.  Capillary electrophoresis coupled with electrochemiluminescence detection using porous etched joint. , 2004, Analytical chemistry.

[22]  E. Wang,et al.  Analytical applications of the electrochemiluminescence of tris (2,2'-bipyridyl) ruthenium and its derivatives , 2004 .

[23]  Shaojun Dong,et al.  Electrogenerated chemiluminescence from R(bpy)3(2+) ion-exchanged in carbon nanotube/perfluorosulfonated ionomer composite films. , 2004, Analytical chemistry.

[24]  Z. El Rassi,et al.  Silica‐based monoliths for capillary electrochromatography: Methods of fabrication and their applications in analytical separations , 2003, Electrophoresis.

[25]  Guonan Chen,et al.  Chemical oxidation of p-hydroxyphenylpyruvic acid in aqueous solution by capillary electrophoresis with an electrochemiluminescence detection system. , 2003, Analytical chemistry.

[26]  Weidong Cao,et al.  Microchip capillary electrophoresis with an integrated indium tin oxide electrode-based electrochemiluminescence detector. , 2003, Analytical chemistry.

[27]  E. Wang,et al.  Direct tris(2,2'‐bipyridyl)ruthenium (II) electrochemiluminescence detection of polyamines separated by capillary electrophoresis , 2003, Electrophoresis.

[28]  Han Nim Choi,et al.  Electrogenerated chemiluminescence from tris(2,2'-bipyridyl)ruthenium(II) immobilized in titania-perfluorosulfonated ionomer composite films. , 2003, Analytical chemistry.

[29]  E. Wang,et al.  Determination of biogenic amines by capillary electrophoresis with pulsed amperometric detection. , 2003, Journal of chromatography. A.

[30]  Z. El Rassi,et al.  Capillary electrochromatography with monolithic silica column: I. Preparation of silica monoliths having surface‐bound octadecyl moieties and their chromatographic characterization and applications to the separation of neutral and charged species , 2003, Electrophoresis.

[31]  A. Malik Advances in sol‐gel based columns for capillary electrochromatography: Sol‐gel open‐tubular columns , 2002, Electrophoresis.

[32]  A. Bard,et al.  Electrogenerated chemiluminescence 69: the tris(2,2'-bipyridine)ruthenium(II), (Ru(bpy)3(2+))/tri-n-propylamine (TPrA) system revisited-a new route involving TPrA*+ cation radicals. , 2002, Journal of the American Chemical Society.

[33]  I. Krull,et al.  Capillary electrochromatography: An alternative to HPLC and CE , 2002 .

[34]  Richard M Crooks,et al.  Electrochemical sensing in microfluidic systems using electrogenerated chemiluminescence as a photonic reporter of redox reactions. , 2002, Journal of the American Chemical Society.

[35]  D. Westerlund,et al.  Capillary electrochromatography of basic compounds in pharmaceutical analysis , 2002 .

[36]  A. Rathore,et al.  Chromatographic and electrophoretic migration parameters in capillary electrochromatography , 2002, Electrophoresis.

[37]  P. Sandra,et al.  Recent applications of capillary electrochromatography , 2001, Electrophoresis.

[38]  M. Richter,et al.  Surfactant chain length effects on the light emission of tris(2,2'-bipyridyl)ruthenium(II)/ tripropylamine electrogenerated chemiluminescence. , 2001, Analytical chemistry.

[39]  Paolo Pastore,et al.  High-frequency electrochemiluminescent investigation of the reaction pathway between tris(2,2′-bipyridyl)ruthenium(II) and tripropylamine using carbon fiber microelectrodes , 2001 .

[40]  G G Guilbault,et al.  Recent applications of electrogenerated chemiluminescence in chemical analysis. , 2001, Talanta.

[41]  Chuen‐Ying Liu Stationary phases for capillary electrophoresis and capillary electrochromatography , 2001, Electrophoresis.

[42]  J. Hayes,et al.  Sol-gel open tubular ODS columns with reversed electroosmotic flow for capillary electrochromatography. , 2001, Analytical chemistry.

[43]  R. Baldwin,et al.  Recent advances in electrochemical detection in capillary electrophoresis , 2000, Electrophoresis.

[44]  Todd D. Maloney,et al.  Recent progress in capillary electrochromatography , 2000, Electrophoresis.

[45]  D. R. Bobbitt,et al.  Electrochemically generated Ru(bpy)(3)(3+)-based chemiluminescence detection in micellar electrokinetic chromatography. , 2000, Talanta.

[46]  Zu,et al.  Electrogenerated chemiluminescence. 66. The role of direct coreactant oxidation in the ruthenium tris(2,2')bipyridyl/tripropylamine system and the effect of halide ions on the emission intensity , 2000, Analytical chemistry.

[47]  J. Luong,et al.  In‐line coupling capillary electrochromatography with amperometric detection for analysis of explosive compounds , 2000, Electrophoresis.

[48]  Horiuchi,et al.  Carbon film-based interdigitated array microelectrode used in capillary electrophoresis with electrochemical detection , 2000, Analytical chemistry.

[49]  I. Gusev,et al.  Capillary columns with in situ formed porous monolithic packing for micro high-performance liquid chromatography and capillary electrochromatography. , 1999, Journal of chromatography. A.

[50]  L. Colón,et al.  Study of the Solution in the Synthesis of a Sol-Gel Composite Used as a Chromatographic Phase , 1999 .

[51]  M. Novotny,et al.  Macroporous Polyacrylamide/Poly(ethylene glycol) Matrixes as Stationary Phases in Capillary Electrochromatography , 1997 .

[52]  T. Nieman,et al.  On-line electrogenerated Ru(bpy)33+ chemiluminescent detection of β-blockers separated with capillary electrophoresis , 1997 .

[53]  Won-Yong Lee,et al.  Tris (2,2′-bipyridyl)ruthenium(II) electrogenerated chemiluminescence in analytical science , 1997 .

[54]  R. Zare,et al.  Automated capillary electrochromatography: reliability and reproducibility studies. , 1996, Journal of chromatography. A.

[55]  L. Colón,et al.  A Stationary Phase for Open Tubular Liquid Chromatography and Electrochromatography Using Sol-Gel Technology , 1995 .

[56]  N. Danielson,et al.  Liquid chromatography of antihistamines using post-column tris(2,2'-bipyridine) ruthenium(III) chemiluminescence detection. , 1994, Journal of chromatography. A.

[57]  Donald R. Bobbitt,et al.  Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2'-bipyridyl)ruthenium(III) with amino acids , 1992 .

[58]  A. Ewing,et al.  Electrochemical detection for capillary electrophoresis , 1991 .

[59]  Jonathan K. Leland,et al.  Electrogenerated Chemiluminescence: An Oxidative‐Reduction Type ECL Reaction Sequence Using Tripropyl Amine , 1990 .

[60]  A. Ewing,et al.  Capillary zone electrophoresis with electrochemical detection. , 1987, Analytical chemistry.

[61]  N. Danielson,et al.  Generation of chemiluminescence upon reaction of aliphatic amines with tris(2,2'-bipyridine)ruthenium(III) , 1987 .

[62]  I. Rubinstein,et al.  Polymer Films on Electrodes. 4. Nafion-Coated Electrodes and Electrogenerated Chemiluminescence of Surface-Attached Ru(bpy)2+3 , 1980 .

[63]  F. Švec Chapter 6 – Capillary Column Technology: Continuous Polymer Monoliths , 2001 .

[64]  F. Kanoufi,et al.  Homogeneous Oxidation of Trialkylamines by Metal Complexes and Its Impact on Electrogenerated Chemiluminescence in the Trialkylamine/Ru(bpy)32+ System , 2001 .

[65]  G. Chirica,et al.  Silicate entrapped columns — new columns designed for capillary electrochromatography , 1999, Electrophoresis.

[66]  K. Bartle,et al.  Capillary electrochromatography. Tutorial Review , 1998 .

[67]  A. Knight,et al.  Relationship between structural attributes and observed electrogenerated chemiluminescence (ECL) activity of tertiary amines as potential analytes for the tris(2,2-bipyridine)ruthenium(II) ECL reaction. A review , 1996 .