High-Accuracy Trajectory Optimization for a Trans-Earth Lunar Mission

The trajectory optimization of a spacecraft subject to the gravitational effects of the moon, Earth, and sun are considered. The problem is how to achieve Earth-interface conditions from a low lunar orbit. Practical constraints of maximum thrust, fuel budget, and flight time generates a constrained, nonautonomous, nonlinear optimal control problem. Severe constraints on the fuel budget combined with high-accuracy demands on the endpoint conditions necessitate a high-accuracy solution to the trajectory optimization problem. The problem is first solved using the standard Legendre pseudospectral method. The optimality of the solution is verified by an application of the covector mapping principle. It is shown that the thrust structure consists of three finite burns with nearly linear steering-angle time histories. A singular arc is detected and is interpreted as a singular plane change maneuver. The Bellman pseudospectral method is then employed for mesh refinement to improve the accuracy of the solution.

[1]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[2]  Qi Gong,et al.  Low-Thrust, High-Accuracy Trajectory Optimization , 2007, Journal of Guidance, Control, and Dynamics.

[3]  Gerald L. Condon,et al.  CEV Trajectory Design Considerations for Lunar Missions , 2007 .

[4]  Cesar A. Ocampo,et al.  Initial trajectory model for a multi-maneuver moon to Earth abort sequence , 2010 .

[5]  Qi Gong,et al.  Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control , 2008, Comput. Optim. Appl..

[6]  Cesar A. Ocampo,et al.  Variational Equations for a Generalized Spacecraft Trajectory Model , 2010 .

[7]  I. Michael Ross,et al.  Spectral Algorithm for Pseudospectral Methods in Optimal Control , 2008, Journal of Guidance, Control, and Dynamics.

[8]  I. Michael Ross,et al.  Costate computation by a Chebyshev pseudospectral method , 2010 .

[9]  HaiYang Li,et al.  Free return orbit design and characteristics analysis for manned lunar mission , 2011 .

[10]  Skander Taamallah,et al.  Optimal Autorotation With Obstacle Avoidance For A Small-Scale Flybarless Helicopter UAV , 2012 .

[11]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[12]  M. W. Weeks,et al.  An Autonomous Onboard Targeting Algorithm Using Finite Thrust Maneuvers , 2009 .

[13]  Wei Kang,et al.  Zero-propellant maneuver guidance , 2009, IEEE Control Systems.

[14]  Christopher D'Souza,et al.  Orion Cislunar Guidance and Navigation , 2007 .

[15]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[16]  A. Miele,et al.  Near-optimal guidance scheme for a Mars trajectory , 2002 .

[17]  P. Williams Jacobi pseudospectral method for solving optimal control problems , 2004 .

[18]  Gerald L. Condon,et al.  Global Performance Characterization of the Three Burn Trans-Earth Injection Maneuver Sequence over the Lunar Nodal Cycle , 2009 .

[19]  I. Michael Ross,et al.  Advances in Pseudospectral Methods for Optimal Control , 2008 .

[20]  M. W. Weeks,et al.  Design of the Onboard Autonomous Targeting Algorithm for the Trans-Earth Phase of Orion , 2008 .

[21]  Qi Gong,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2006, IEEE Transactions on Automatic Control.

[22]  Wei Kang,et al.  The rate of convergence for a pseudospectral optimal control method , 2008, 2008 47th IEEE Conference on Decision and Control.

[23]  Qi Gong,et al.  The Bellman Pseudospectral Method , 2008 .

[24]  I. Michael Ross,et al.  First Flight Results on Time-Optimal Spacecraft Slews , 2012 .

[25]  I. Michael Ross,et al.  Fuel-optimal design of Moon-Earth trajectories using Legendre pseudospectral method , 2008 .

[26]  I. Michael Ross,et al.  Convergence of the Costates Does Not Imply Convergence of the Control , 2008, Journal of Guidance, Control, and Dynamics.

[27]  Xiang Wang,et al.  Launch window for manned Moon‐to‐Earth trajectories , 2012 .

[28]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .

[29]  Waldy K. Sjauw,et al.  Comparison of Implicit Integration Methods for Solving Aerospace Trajectory Optimization Problems , 2006 .

[30]  I. Michael Ross,et al.  High-Accuracy Moon to Earth Escape Trajectory Optimization , 2010 .

[32]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..