Analyse, Modélisation et Simulation du Mouvement Humain

Comprendre le mouvement humain mobilise des chercheurs de nombreuses disciplines scientifiques : physiologie, biomecanique, neurosciences comportementales, anatomie fonctionnelle, les sciences du sport... Mes travaux s'inscrivent donc dans une demarche pluridisciplinaire d'analyse/synthese du mouvement humain. Pour mener a bien cette demarche, une premiere tâche consiste a modeliser et a simuler le systeme moteur ainsi qu'un ensemble d'hypotheses. L'objectif est de disposer d'une representation numerique du probleme. Les mouvements simules doivent ensuite etre confrontes a des donnees experimentales pour valider a la fois les hypotheses, le modele et la methode de simulation. Mon travail s'organise en trois principales contributions qui entrent dans cette approche d'analyse/synthese. La premiere contribution concerne le developpement de nouvelles methodes de modelisation et de simulation de mouvements permettant de tester des connaissances issues des sciences experimentales. La methode doit aussi etre capable de calculer tres rapidement des mouvements afin d'integrer les personnages simules dans des environnements interactifs, comme en realite virtuelle, par exemple. Pour modeliser et simuler un mouvement naturel, il faut etre capable de gerer des contraintes cinematiques (pour tenir compte de la geometrie de son environnement), cinetiques (pour gerer la repartition de ses masses dans l'espace), dynamiques (les lois de la mecanique s'appliquent evidemment aussi) et d'autres que nous regrouperons sous le terme de " style " (lie a des aspects psychologiques, sociologiques...). Nous avons propose une nouvelle representation du mouvement humain qui simplifie grandement la resolution de contraintes cinematiques et cinetiques a partir d'un mouvement initial (issu d'un systeme de mesures ou concu manuellement). L'hypothese est que les mouvements mesures verifient intrinsequement la plupart des contraintes citees precedemment. Il est ensuite possible d'ajouter ou de modifier certaines de ces contraintes pour simuler l'adaptation du systeme moteur a de nouvelles situations. La deuxieme contribution concerne la definition d'un protocole de validation des mouvements simules. C'est un probleme difficile car le mouvement humain implique un grand nombre de degres de liberte et de pas de temps, ce qui conduit a un espace de dimension enorme. Comment ramener cela a une valeur unique de distance ? Les methodes classiques utilisent des erreurs moyennes, des correlations ou des correspondances temporelles entre courbes. Cependant, ces valeurs quantifiables ne refletent pas toujours le realisme des mouvements simules si on demande a des sujets d'en juger la qualite. En realite virtuelle, plusieurs travaux cherchent a evaluer la sensation d'etre present dans un environnement simule. Nous avons donc propose de juger du realisme du mouvement en faisant interagir des sujets reels avec des entites simulees. Ces travaux ont ete menes dans le cadre particulier du duel gardien-tireur mais pourraient etre etendus a un cas plus general. La troisieme contribution concerne une etude transversale de la locomotion bipede via une approche de type analyse/synthese. L'objectif de ce travail est de deduire completement un mouvement de locomotion a partir d'un ensemble de donnees anatomiques et d'hypotheses generales issues de la biomecanique et des neurosciences. Une application evidente concerne la cherche de locomotions possibles pour des especes fossiles. Fondamentalement, le probleme revient a gerer un espace tres important de postures possibles a chaque pas de temps et a en extraire une sequence qui soit comparable a ce qu'une creature reelle aurait naturellement produit. Nos travaux ont donc abouti a un une plate-forme de tests d'hypotheses locomotrices (minimisation d'energie, de la derivee de l'acceleration, de la distance a une posture de reference...). L'entree principale de cette plate-forme est la description de l'anatomie de la creature et une serie d'empreintes a suivre.

[1]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[2]  Jessica K. Hodgins,et al.  Three-dimensional human running , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[3]  Guillaume Rao,et al.  Judging where a ball will go: the case of curved free kicks in football , 2006, Naturwissenschaften.

[4]  Daniel Thalmann,et al.  A real time anatomical converter for human motion capture , 1996 .

[5]  Golam Ashraf,et al.  Constrained framespace interpolation , 2001, Proceedings Computer Animation 2001. Fourteenth Conference on Computer Animation (Cat. No.01TH8596).

[6]  J. Halbertsma,et al.  Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans. , 1985, Acta physiologica Scandinavica.

[7]  Bruno Arnaldi,et al.  Virtual reality applied to sports: do handball goalkeepers react realistically to simulated synthetic opponents? , 2004, VRCAI '04.

[8]  Franck Multon,et al.  Using virtual reality to analyze links between handball thrower kinematics and goalkeeper's reactions , 2004, Neuroscience Letters.

[9]  R. Kulpa,et al.  Fast inverse kinematics and kinetics solver for human-like figures , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[10]  S. Aleshinsky An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--II. Movement of the multi-link chain model. , 1986, Journal of biomechanics.

[11]  R. Burdett,et al.  Comparison of mechanical work and metabolic energy consumption during normal gait , 1983, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[12]  G. Cavagna,et al.  External, internal and total work in human locomotion. , 1995, The Journal of experimental biology.

[13]  John E. Dennis,et al.  Multidirectional search: a direct search algorithm for parallel machines , 1989 .

[14]  N. A. Bernshteĭn The co-ordination and regulation of movements , 1967 .

[15]  R. Kulpa,et al.  Adaptation interactive et performante des mouvements d'humanoïdes synthétiques :aspects cinématique, cinétique et dynamique , 2005 .

[16]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  H M Toussaint,et al.  Optimizing the determination of the body center of mass. , 1995, Journal of biomechanics.

[18]  M. Yeadon The simulation of aerial movement--I. The determination of orientation angles from film data. , 1990, Journal of biomechanics.

[19]  Michael Gleicher,et al.  Motion editing with spacetime constraints , 1997, SI3D.

[20]  Jessica K. Hodgins,et al.  Tracking and Modifying Upper-body Human Motion Data with Dynamic Simulation , 1999, Computer Animation and Simulation.

[21]  Bryan Buchholz,et al.  ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. , 2005, Journal of biomechanics.

[22]  David A. Forsyth,et al.  Pushing people around , 2005, SCA '05.

[23]  R. McN. Alexander,et al.  A minimum energy cost hypothesis for human arm trajectories , 1997, Biological Cybernetics.

[24]  P. Delamarche,et al.  Stroboscopic computerized determination of humeral rotation in overarm throwing. , 1992, British journal of sports medicine.

[25]  Ferdinand Freudenstein,et al.  Kinematic Synthesis of Linkages , 1965 .

[26]  Alexis Héloir,et al.  Captured Motion Data Processing for Real Time Synthesis of Sign Language , 2005, Gesture Workshop.

[27]  A. Berthoz,et al.  Head stabilization during various locomotor tasks in humans , 2004, Experimental Brain Research.

[28]  Joseph Psotka,et al.  Immersive training systems: Virtual reality and education and training , 1995 .

[29]  A. Minetti,et al.  Mechanical determinants of the minimum energy cost of gradient running in humans. , 1994, The Journal of experimental biology.

[30]  Georges-Henri Dumont Animation de scenes tridimensionnelles : la mecanique des solides comme modele de synthese du mouvement , 1990 .

[31]  S Y Aleshinsky,et al.  An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--I. Basic concepts, description of the model, analysis of a one-link system movement. , 1986, Journal of biomechanics.

[32]  Konrad Paul Kording,et al.  Review TRENDS in Cognitive Sciences Vol.10 No.7 July 2006 Special Issue: Probabilistic models of cognition Bayesian decision theory in sensorimotor control , 2022 .

[33]  Thierry Siméon,et al.  Eurographics/siggraph Symposium on Computer Animation (2003) Visual Simulation of Ice Crystal Growth , 2022 .

[34]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH '08.

[35]  Jonathan Steuer,et al.  Defining virtual reality: dimensions determining telepresence , 1992 .

[36]  Bruno Arnaldi,et al.  Animation Levels of Detail Design for Real-Time Virtual Human , 1999, Computer Animation and Simulation.

[37]  F. Multon,et al.  Does training have consequences for the walk-run transition speed? , 2003, Human movement science.

[38]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[39]  C Tardieu,et al.  New method of three-dimensional analysis of bipedal locomotion for the study of displacements of the body and body-parts centers of mass in man and non-human primates: evolutionary framework. , 1993, American journal of physical anthropology.

[40]  Y. Nakamura,et al.  Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model , 2005, IEEE Transactions on Robotics.

[41]  R. Crompton,et al.  The metabolic costs of 'bent-hip, bent-knee' walking in humans. , 2005, Journal of human evolution.

[42]  Alain Berthoz,et al.  Intersegmental coordination during human locomotion: does planar covariation of elevation angles reflect central constraints? , 2006, Journal of neurophysiology.

[43]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[44]  J. G. Andrews,et al.  Selection of body segment parameters by optimization methods. , 1982, Journal of biomechanical engineering.

[45]  Ronan Boulic,et al.  An inverse kinematics architecture enforcing an arbitrary number of strict priority levels , 2004, The Visual Computer.

[46]  P. Viviani,et al.  The law relating the kinematic and figural aspects of drawing movements. , 1983, Acta psychologica.

[47]  R. Crompton,et al.  The mechanical effectiveness of erect and "bent-hip, bent-knee" bipedal walking in Australopithecus afarensis. , 1998, Journal of human evolution.

[48]  Karan Singh,et al.  Layered dynamic control for interactive character swimming , 2004, SCA '04.

[49]  Frédéric H. Pighin,et al.  Unsupervised learning for speech motion editing , 2003, SCA '03.

[50]  Philippe Gorce,et al.  A neural network architecture to learn the arm reach motion planning in a static cluttered environment , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[51]  Bruno Arnaldi,et al.  Conception du noyau d'un système d'animation de scènes tridimensionnelles intégrant les lois de la mécanique , 1988 .

[52]  D. Winter,et al.  Transfers of mechanical energy within the total body and mechanical efficiency during treadmill walking. , 1980, Ergonomics.

[53]  Jason Wicke,et al.  Validation of the Volume Function Within Jensen’s (1978) Elliptical Cylinder Model , 2003 .

[54]  W. Kenchington Animal mechanics , 1975, Nature.

[55]  R. Margaria,et al.  Energy cost of running. , 1963, Journal of applied physiology.

[56]  Carole Durocher Analyse, modélisation et simulation de l'impulsion au sol dans les activités physiques. , 2005 .

[57]  Alexander Rm,et al.  A minimum energy cost hypothesis for human arm trajectories. , 1997 .

[58]  Ronan Boulic,et al.  Interactive motion deformation with prioritized constraints , 2004, SCA '04.

[59]  Michael J. Singer,et al.  Measuring Presence in Virtual Environments: A Presence Questionnaire , 1998, Presence.

[60]  P. Kramer,et al.  Locomotor energetics and leg length in hominid bipedality. , 2000, Journal of human evolution.

[61]  Daniel Thalmann,et al.  Virtual Human Representation and Communication in VLNet , 1997, IEEE Computer Graphics and Applications.

[62]  John T. McConville,et al.  INVESTIGATION OF INERTIAL PROPERTIES OF THE HUMAN BODY , 1975 .

[63]  G. Swaminathan Robot Motion Planning , 2006 .

[64]  P R Cavanagh,et al.  A model for the calculation of mechanical power during distance running. , 1983, Journal of biomechanics.

[65]  S. Aleshinsky An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--V. The mechanical energy expenditure reduction during motion of the multi-link system. , 1986, Journal of biomechanics.

[66]  Hyun Joon Shin,et al.  Snap-together motion: assembling run-time animations , 2003, SIGGRAPH '08.

[67]  Daniel Thalmann,et al.  PCA-based walking engine using motion capture data , 2004, Proceedings Computer Graphics International, 2004..

[68]  Jessica K. Hodgins,et al.  Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces , 2004, ACM Trans. Graph..

[69]  W. Sellers,et al.  Stride lengths, speed and energy costs in walking of Australopithecus afarensis: using evolutionary robotics to predict locomotion of early human ancestors , 2005, Journal of The Royal Society Interface.

[70]  V. J. Torczoit,et al.  Multidirectional search: a direct search algorithm for parallel machines , 1989 .

[71]  M. Orendurff,et al.  The kinematics and kinetics of turning: limb asymmetries associated with walking a circular path. , 2006, Gait & posture.

[72]  Bobby Bodenheimer,et al.  An evaluation of a cost metric for selecting transitions between motion segments , 2003, SCA '03.

[73]  Daniel Thalmann,et al.  Human Motion Capture Driven by Orientation Measurements , 1999, Presence: Teleoperators & Virtual Environments.

[74]  Jean-Paul Laumond,et al.  Animation planning for virtual characters cooperation , 2006, TOGS.

[75]  Catherine Pelachaud,et al.  Virtual humanoids endowed with expressive communication gestures : the HuGEx project , 2006, 2006 IEEE International Conference on Systems, Man and Cybernetics.

[76]  Bruno Arnaldi,et al.  Real Handball Goalkeeper vs. Virtual Handball Thrower , 2003, Presence: Teleoperators & Virtual Environments.

[77]  Franck Multon,et al.  Simulation of Hemiplegic Subjects' Locomotion , 2005, Gesture Workshop.

[78]  P. Viviani,et al.  Trajectory determines movement dynamics , 1982, Neuroscience.

[79]  M. Leakey,et al.  Laetoli : a Pliocene site in northern Tanzania , 1988 .

[80]  F. Huddle Coordination , 1966, Open Knowledge Institutions.

[81]  M Miyashita,et al.  Mechanical energy changes during treadmill running. , 1985, Medicine and science in sports and exercise.

[82]  A. Daffertshofer,et al.  Multiple time scales and multiform dynamics in learning to juggle. , 2004, Motor control.

[83]  Franck Multon,et al.  From bone to plausible bipedal locomotion using inverse kinematics. , 2007, Journal of biomechanics.

[84]  Thomas W. Calvert,et al.  Goal-directed, dynamic animation of human walking , 1989, SIGGRAPH.

[85]  M. R. Yeadon,et al.  The appropriate use of regression equations for the estimation of segmental inertia parameters. , 1989, Journal of biomechanics.

[86]  A. Berthoz,et al.  Le sens du mouvement , 1997 .

[87]  A Hreljac,et al.  Preferred and energetically optimal gait transition speeds in human locomotion. , 1993, Medicine and science in sports and exercise.

[88]  Time-Life Books,et al.  WALKING AND RUNNING. , 1885, Science.

[89]  Jean-Paul Laumond,et al.  Planning fine motions for a digital factotum , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[90]  Pascal Fua,et al.  Skeleton-based motion capture for robust reconstruction of human motion , 2000, Proceedings Computer Animation 2000.

[91]  Nancy S. Pollard,et al.  Force-based motion editing for locomotion tasks , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[92]  Daniel Thalmann,et al.  The animation of autonomous actors based on production rules , 1996, Proceedings Computer Animation '96.

[93]  Daniel Thalmann,et al.  A robust approach for the center of mass position control with inverse kinetics , 1996 .

[94]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[95]  H. Hicheur,et al.  Head motion in humans alternating between straight and curved walking path: Combination of stabilizing and anticipatory orienting mechanisms , 2005, Neuroscience Letters.

[96]  S. Schaal,et al.  One-Handed Juggling: A Dynamical Approach to a Rhythmic Movement Task. , 1996, Journal of motor behavior.

[97]  L. Broström,et al.  Changes in walking ability after knee replacement , 2004, International Orthopaedics.

[98]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[99]  Novacheck,et al.  The biomechanics of running. , 1998, Gait & posture.

[100]  A. Berthoz,et al.  Relationship between velocity and curvature of a human locomotor trajectory , 2001, Neuroscience Letters.

[101]  Richard Reviewer-Granger Unified Theories of Cognition , 1991, Journal of Cognitive Neuroscience.

[102]  Victor B. Zordan,et al.  Dynamic response for motion capture animation , 2005, SIGGRAPH '05.

[103]  L. R. Rabiner,et al.  A comparative study of several dynamic time-warping algorithms for connected-word recognition , 1981, The Bell System Technical Journal.

[104]  Jessica K. Hodgins,et al.  Do Geometric Models Affect Judgments of Human Motion? , 1997, Graphics Interface.

[105]  F. Lacquaniti,et al.  Independent control of limb position and contact forces in cat posture. , 1994, Journal of neurophysiology.

[106]  Michael F. Cohen,et al.  Interactive spacetime control for animation , 1992, SIGGRAPH.

[107]  Andrzej Wit,et al.  A THREE-DIMENSIONAL KINEMATIC ANALYSIS OF HANDBALL THROWS , 1998 .

[108]  Sébastien Paris,et al.  Environmental abstraction and path planning techniques for realistic crowd simulation , 2006, Comput. Animat. Virtual Worlds.

[109]  Jessica K. Hodgins,et al.  Analyzing the physical correctness of interpolated human motion , 2005, SCA '05.

[110]  Mel Slater,et al.  Depth of Presence in Virtual Environments , 1994, Presence: Teleoperators & Virtual Environments.

[111]  S L Delp,et al.  A graphics-based software system to develop and analyze models of musculoskeletal structures. , 1995, Computers in biology and medicine.

[112]  Catherine Pelachaud,et al.  Subtleties of facial expressions in embodied agents , 2002, Comput. Animat. Virtual Worlds.

[113]  G. Zahalak,et al.  A distribution-moment model of energetics in skeletal muscle. , 1991, Journal of biomechanics.

[114]  Alan Watt,et al.  Advanced animation and rendering techniques - theory and practice , 1992 .

[115]  Daniel Thalmann,et al.  Combined Direct and Inverse Kinematic Control for Articulated Figure Motion Editing , 1992, Comput. Graph. Forum.

[116]  R. Alexander,et al.  Bipedal animals, and their differences from humans , 2004, Journal of anatomy.

[117]  D. Skočaj Weighted Incremental Subspace Learning , 2002 .

[118]  Anthony A. Maciejewski,et al.  Computational modeling for the computer animation of legged figures , 1985, SIGGRAPH.

[119]  G. Cavagna,et al.  Mechanical work and efficiency in level walking and running , 1977, The Journal of physiology.

[120]  Vaughan Cl Biomechanics of running gait. , 1984 .

[121]  C. E. Clauser,et al.  Weight, volume, and center of mass of segments of the human body , 1969 .

[122]  Jovan Popovic,et al.  Style translation for human motion , 2005, ACM Trans. Graph..

[123]  S Y Aleshinsky,et al.  An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--IV. Criticism of the concept of 'energy transfers within and between links'. , 1986, Journal of biomechanics.

[124]  F. Lacquaniti,et al.  Basal ganglia and gait control: apomorphine administration and internal pallidum stimulation in Parkinson’s disease , 1999, Experimental Brain Research.

[125]  A. Newell Unified Theories of Cognition , 1990 .

[126]  Georges Dumont,et al.  Testing locomotor hypothesis in early hominids: 3d odelling and simulation of bipedalisms using anatomical data , 2004 .

[127]  Yong Cao,et al.  Style components , 2006, Graphics Interface.

[128]  D. Winter A new definition of mechanical work done in human movement. , 1979, Journal of applied physiology: respiratory, environmental and exercise physiology.

[129]  Norman I. Badler,et al.  The EMOTE model for effort and shape , 2000, SIGGRAPH.

[130]  Bruno Arnaldi,et al.  Synchronization for dynamic blending of motions , 2004, SCA '04.

[132]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[133]  S Y Aleshinsky,et al.  An energy 'sources' and 'fractions' approach to the mechanical energy expenditure problem--III. Mechanical energy expenditure reduction during one link motion. , 1986, Journal of biomechanics.

[134]  Zeltzer,et al.  Motor Control Techniques for Figure Animation , 1982, IEEE Computer Graphics and Applications.

[135]  Stan Salvador,et al.  FastDTW: Toward Accurate Dynamic Time Warping in Linear Time and Space , 2004 .

[136]  Sung Yong Shin,et al.  Planning biped locomotion using motion capture data and probabilistic roadmaps , 2003, TOGS.

[137]  Michael Gleicher,et al.  Retargetting motion to new characters , 1998, SIGGRAPH.

[138]  D. Pearsall,et al.  The effect of segment parameter error on gait analysis results. , 1999, Gait & posture.

[139]  F. Multon,et al.  Do handball throws always exhibit a proximal-to-distal segmental sequence? , 2004, Journal of sports sciences.

[140]  Norman I. Badler,et al.  Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs , 2000, Graph. Model..

[141]  Jessica K. Hodgins,et al.  Automatic Joint Parameter Estimation from Magnetic Motion Capture Data , 2023, Graphics Interface.

[142]  Dimitris N. Metaxas,et al.  Automating gait generation , 2001, SIGGRAPH.

[143]  B. Cohen,et al.  Interaction of the body, head, and eyes during walking and turning , 2000, Experimental Brain Research.

[144]  Daniel Thalmann,et al.  A global human walking model with real-time kinematic personification , 1990, The Visual Computer.

[145]  Taku Komura,et al.  Animating reactive motion using momentum‐based inverse kinematics , 2005, Comput. Animat. Virtual Worlds.

[146]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.

[147]  Mel Slater,et al.  Presence in immersive virtual environments , 1993, Proceedings of IEEE Virtual Reality Annual International Symposium.

[148]  R H Crompton,et al.  Size and power required for motion with implication for the evolution of early hominids. , 2003, Journal of biomechanics.

[149]  Katsu Yamane,et al.  Dynamics Filter - concept and implementation of online motion Generator for human figures , 2000, IEEE Trans. Robotics Autom..

[150]  Jehee Lee,et al.  Precomputing avatar behavior from human motion data , 2004, SCA '04.

[151]  G E Caldwell,et al.  Estimates of mechanical work and energy transfers: demonstration of a rigid body power model of the recovery leg in gait. , 1992, Medicine and science in sports and exercise.

[152]  Bobby Bodenheimer,et al.  The Process of Motion Capture: Dealing with the Data , 1997, Computer Animation and Simulation.

[153]  F. Lacquaniti,et al.  Kinematic coordination in human gait: relation to mechanical energy cost. , 1998, Journal of neurophysiology.

[154]  P. Leva Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. , 1996 .

[155]  S. Schaal,et al.  Origins and violations of the 2/3 power law in rhythmic three-dimensional arm movements , 2000, Experimental Brain Research.

[156]  Stéphane Menardais Fusion et adaptation temps réel de mouvements acquis pour l'animation d'humanoi͏̈des synthétiques , 2003 .

[157]  David C. Brogan,et al.  Animating human athletics , 1995, SIGGRAPH.

[158]  Andreas Daffertshofer,et al.  Principal components in three-ball cascade juggling , 2000, Biological Cybernetics.

[159]  Michael Gleicher,et al.  Constraint-based motion adaptation , 1998, Comput. Animat. Virtual Worlds.

[160]  Mel Slater,et al.  Measuring Presence: A Response to the Witmer and Singer Presence Questionnaire , 1999, Presence.

[161]  Mel Slater,et al.  Immersion, presence and performance in virtual environments: an experiment with tri-dimensional chess , 1996, VRST.

[162]  Jack M. Winters,et al.  Modeling Musculoskeletal Movement Systems: Joint and Body Segmental Dynamics, Musculoskeletal Actuation, and Neuromuscular Control , 1990 .

[163]  Nancy S. Pollard,et al.  Perceptual metrics for character animation: sensitivity to errors in ballistic motion , 2003, ACM Trans. Graph..

[164]  Zicheng Liu,et al.  Hierarchical spacetime control , 1994, SIGGRAPH.

[165]  Young-Hoo Kwon Experimental Simulation of an Airborne Movement: Applicability of the Body Segment Parameter Estimation Methods , 2001 .

[166]  R. Alexander,et al.  A model of bipedal locomotion on compliant legs. , 1992, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[167]  E. Berton,et al.  Influence of body segments' parameters estimation models on inverse dynamics solutions during gait. , 2006, Journal of biomechanics.

[168]  Kenji Amaya,et al.  Emotion from Motion , 1996, Graphics Interface.

[169]  F.E. Zajac,et al.  An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures , 1990, IEEE Transactions on Biomedical Engineering.

[170]  Sung Yong Shin,et al.  A hierarchical approach to interactive motion editing for human-like figures , 1999, SIGGRAPH.

[171]  Jessica K. Hodgins,et al.  Adapting simulated behaviors for new characters , 1997, SIGGRAPH.

[172]  T. Flash,et al.  Velocity and curvature in human locomotion along complex curved paths: a comparison with hand movements , 2005, Experimental Brain Research.

[173]  Shang Guo,et al.  A high-level control mechanism for human locomotion based on parametric frame space interpolation , 1996 .

[174]  D. Ostry,et al.  Origins of the power law relation between movement velocity and curvature: modeling the effects of muscle mechanics and limb dynamics. , 1996, Journal of neurophysiology.

[175]  Joe Marks,et al.  Spacetime constraints revisited , 1993, SIGGRAPH.

[176]  Andrea N. Lay,et al.  The effects of sloped surfaces on locomotion: a kinematic and kinetic analysis. , 2006, Journal of biomechanics.

[177]  Jessica K. Hodgins,et al.  The Effects of Noise on the Perception of Animated Human Running , 1999, Computer Animation and Simulation.

[178]  R. Jensen,et al.  Estimation of the biomechanical properties of three body types using a photogrammetric method. , 1978, Journal of biomechanics.

[179]  Richard Baker,et al.  ISB recommendation on definition of joint coordinate systems for the reporting of human joint motion-part I: ankle, hip and spine. , 2003, Journal of biomechanics.

[180]  Meinard Müller,et al.  Efficient content-based retrieval of motion capture data , 2005, SIGGRAPH '05.

[181]  Alexis Héloir,et al.  Temporal alignment of communicative gesture sequences , 2006, Comput. Animat. Virtual Worlds.

[182]  Eugene Fiume,et al.  An efficient search algorithm for motion data using weighted PCA , 2005, SCA '05.

[183]  Golam Ashraf,et al.  Generating Consistent Motion Transition via Decoupled Framespace Interpolation , 2000, Comput. Graph. Forum.

[184]  Georges Dumont,et al.  Morphological and stance interpolations in database for simulating bipedalism of virtual humans , 2005, The Visual Computer.

[185]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[186]  Sung Yong Shin,et al.  Computer puppetry: An importance-based approach , 2001, TOGS.

[187]  Franck Multon Controle du mouvement des humanoides de synthese , 1998 .

[188]  Role of mechanical power estimates in the O2 cost of walking in children with cerebral palsy. , 1999, Medicine and science in sports and exercise.

[189]  D Thalmann,et al.  Using skeleton-based tracking to increase the reliability of optical motion capture. , 2001, Human movement science.

[190]  Lucas Kovar,et al.  Flexible automatic motion blending with registration curves , 2003, SCA '03.

[191]  W. J. Beek,et al.  A Dynamical Systems Approach to Skill Acquisition , 1992, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[192]  David C. Brogan,et al.  Dynamically simulated characters in virtual environments , 1998, SIGGRAPH '97.

[193]  Franck Multon,et al.  Dynamic Control of Captured Motions to Verify New Constraints , 2005, Gesture Workshop.

[194]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[195]  É. Marey,et al.  La machine animale. Locomotion terrestre et aérienne , 1886 .

[196]  F. Lacquaniti,et al.  Coordinate transformations in the control of cat posture. , 1994, Journal of neurophysiology.

[197]  Bruno Arnaldi,et al.  Motion blending for real-time animation while accounting for the environment , 2004, Proceedings Computer Graphics International, 2004..