Evaluating the Maximal Violation of the Original Bell Inequality by Two-Qudit States Exhibiting Perfect Correlations/Anticorrelations

We introduce the general class of symmetric two-qubit states guaranteeing the perfect correlation or anticorrelation of Alice and Bob outcomes whenever some spin observable is measured at both sites. We prove that, for all states from this class, the maximal violation of the original Bell inequality is upper bounded by 32 and specify the two-qubit states where this quantum upper bound is attained. The case of two-qutrit states is more complicated. Here, for all two-qutrit states, we obtain the same upper bound 32 for violation of the original Bell inequality under Alice and Bob spin measurements, but we have not yet been able to show that this quantum upper bound is the least one. We discuss experimental consequences of our mathematical study.

[1]  Andrei Khrennikov,et al.  On the equivalence of the Clauser–Horne and Eberhard inequality based tests , 2014, 1403.2811.

[2]  Karl Svozil,et al.  Generalizing Tsirelson's bound on Bell inequalities using a min-max principle. , 2004, Physical review letters.

[3]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[4]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[5]  M. Junge,et al.  Large Violation of Bell Inequalities with Low Entanglement , 2010, 1007.3043.

[6]  Elena R. Loubenets,et al.  Local hidden variable modelling, classicality, quantum separability and the original Bell inequality , 2009, 0903.4454.

[7]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[8]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[9]  Elena R. Loubenets,et al.  Multipartite Bell-type inequalities for arbitrary numbers of settings and outcomes per site , 2008, 0804.4046.

[10]  Elena R. Loubenets New concise upper bounds on quantum violation of general multipartite Bell inequalities , 2016 .

[11]  Elena R. Loubenets Reply to "Comment on 'Separability of quantum states and the violation of Bell-type inequalities'" , 2004 .

[12]  Marian Kupczynski,et al.  Can Einstein with Bohr Debate on Quantum Mechanics Be Closed , 2016 .

[13]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[14]  Elena R. Loubenets LETTER TO THE EDITOR: Class of bipartite quantum states satisfying the original Bell inequality , 2005 .

[15]  Shellee D. Dyer,et al.  A strong loophole-free test of local realism , 2015 .

[16]  A. Shimony,et al.  Bell's theorem. Experimental tests and implications , 1978 .

[17]  Aaron J. Miller,et al.  Detection-loophole-free test of quantum nonlocality, and applications. , 2013, Physical review letters.

[18]  Alain Aspect,et al.  Viewpoint: Closing the Door on Einstein and Bohr’s Quantum Debate , 2015 .

[19]  B. Tsirelson Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .

[20]  Andrei Khrennikov,et al.  Towards Experiments to Test Violation of the Original Bell Inequality , 2018, Entropy.

[21]  Guang-Can Guo,et al.  Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality , 2017 .

[22]  H. Weinfurter,et al.  Violation of Bell's Inequality under Strict Einstein Locality Conditions , 1998, quant-ph/9810080.

[23]  Elena R. Loubenets,et al.  On the probabilistic description of a multipartite correlation scenario with arbitrary numbers of settings and outcomes per site , 2008, 0804.2398.

[24]  Itamar Pitowsky New Bell inequalities for the singlet state: Going beyond the Grothendieck bound , 2008 .

[25]  M. Horne,et al.  Experimental Consequences of Objective Local Theories , 1974 .

[26]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[27]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[28]  Andrei Khrennikov,et al.  True contextuality beats direct influences in human decision making. , 2018, Journal of experimental psychology. General.

[29]  Karl Svozil,et al.  Boole-Bell-type inequalities in Mathematica , 2001 .

[30]  Karl Svozil,et al.  Tracing the bounds on Bell‐type inequalities , 2005 .

[31]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[32]  Howard Wiseman,et al.  Quantum physics: Death by experiment for local realism , 2015, Nature.

[33]  S. Wehner,et al.  Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres , 2015, Nature.

[34]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[35]  Elena R. Loubenets,et al.  Local quasi hidden variable modelling and violations of Bell-type inequalities by a multipartite quantum state , 2011, 1104.2289.

[36]  Luiz Carlos Ryff,et al.  Bell and Greenberger, Horne, and Zeilinger theorems revisited , 1997 .

[37]  Andrei Khrennikov,et al.  Bohr against Bell: complementarity versus nonlocality , 2017 .

[38]  R. Mcweeny On the Einstein-Podolsky-Rosen Paradox , 2000 .

[39]  Andrei Khrennikov,et al.  After Bell , 2016, 1603.08674.

[40]  Marian Kupczynski,et al.  Can we close the Bohr–Einstein quantum debate? , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[41]  Zhe Yang,et al.  Realistic interpretation of quantum mechanics and encounter-delayed-choice experiment , 2014, 1410.4129.

[42]  Jörn Beyer,et al.  A significant-loophole-free test of Bell's theorem with entangled photons , 2017, Security + Defence.

[43]  A. Khrennikov After Bell , 2016, 1603.08674.

[44]  R. N. Schouten,et al.  Experimental loophole-free violation of a Bell inequality using entangled electron spins separated by 1.3 km , 2015, 1508.05949.

[45]  Brian R. La Cour,et al.  Local hidden-variable model for a recent experimental test of quantum nonlocality and local contextuality , 2017, 1803.00852.

[46]  Jan-Åke Larsson Bell’s inequality and detector inefficiency , 1998 .

[47]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[48]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[49]  Elena R. Loubenets Threshold bounds for noisy bipartite states , 2005, quant-ph/0512245.