The moving contact line on a smooth solid surface

Abstract A mathematical model for the advancing contact-line motion on a smooth solid surface is proposed. It is shown that in the spreading of liquids over solid surfaces, the flow causes a surface tension gradient along the liquid-solid interface which influences the flow and, in the case of small capillary and Reynolds numbers, determines the dynamic contact angle and the force between the liquid and solid in the vicinity of the contact line. The model: (a) eliminates the shear-stress singularity of the classical model; (b) describes the fluid motion as rolling, in complete agreement with direct experimental observations; (c) determines the dynamic contact angle and the tangential force dependence on the contact-line speed; (d) explains the existence of the maximum contact angle values

[1]  C. Ngan On the dynamics of liquid spreading on solid surfaces , 1989, Journal of Fluid Mechanics.

[2]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[3]  Clarence A. Miller,et al.  Spreading kinetics of a drop on a rough solid surface , 1983 .

[4]  Clarence A. Miller,et al.  Spreading kinetics of liquid drops on solids , 1976 .

[5]  G. Inverarity,et al.  Dynamic wetting of glass fibre and polymer fibre , 1969 .

[6]  E. B. Dussan,et al.  LIQUIDS ON SOLID SURFACES: STATIC AND DYNAMIC CONTACT LINES , 1979 .

[7]  H. P. Greenspan,et al.  On the motion of a small viscous droplet that wets a surface , 1978, Journal of Fluid Mechanics.

[8]  L. M. Hocking A moving fluid interface. Part 2. The removal of the force singularity by a slip flow , 1977, Journal of Fluid Mechanics.

[9]  Chun Huh,et al.  The steady movement of a liquid meniscus in a capillary tube , 1977, Journal of Fluid Mechanics.

[10]  A. Riddiford,et al.  Dynamic contact angles , 1967 .

[11]  Cazabat,et al.  Dynamics of wetting of tiny drops: Ellipsometric study of the late stages of spreading. , 1989, Physical review letters.

[12]  R. Hoffman A study of the advancing interface. I. Interface shape in liquid—gas systems , 1975 .

[13]  R. Burley,et al.  An experimental study of air entrainment at a solid/liquid/gas interface , 1976 .

[14]  T. D. Blake,et al.  A maximum speed of wetting , 1979, Nature.

[15]  L. M. Hocking,et al.  The spreading of a drop by capillary action , 1982, Journal of Fluid Mechanics.

[16]  Edgar B. Gutoff,et al.  Dynamic contact angles , 1982 .

[17]  R. G. Cox The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow , 1986, Journal of Fluid Mechanics.

[18]  W. Hardy,et al.  III. The spreading of fluids on glass , 1919 .

[19]  T. Blake,et al.  Kinetics of displacement , 1969 .

[20]  V. Golubev Asymptote to the free surface of a viscous liquid creeping on a surface and the velocity dependence of the angle of contact , 1978 .

[21]  James Lowndes,et al.  The numerical simulation of the steady movement of a fluid meniscus in a capillary tube , 1980, Journal of Fluid Mechanics.

[22]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[23]  L. M. Hocking A moving fluid interface on a rough surface , 1976, Journal of Fluid Mechanics.

[24]  J. .. Habbottle Anisotropic irradiation creep of zircaloy-2 , 1978 .

[25]  Y. Shikhmurzaev A two-layer model of an interface between immiscible fluids , 1993 .

[26]  G D Yarnold,et al.  The motion of a mercury index in a capillary tube , 1938 .

[27]  R. Ablett XXV. An investigation of the angle of contact between paraffin wax and water , 1923 .

[28]  Per Stenius,et al.  Kinetics of steady-state wetting , 1990 .

[29]  H. Frisch,et al.  Kinetics of Wetting of Surfaces by Polymer Melts , 1966 .

[30]  Zhou,et al.  Dynamics of immiscible-fluid displacement in a capillary tube. , 1990, Physical Review Letters.

[31]  R. Burley,et al.  A study of the dynamic wetting behaviour of polyester tapes , 1976 .

[32]  H. K. Moffatt Viscous and resistive eddies near a sharp corner , 1964, Journal of Fluid Mechanics.

[33]  P. Durbin Considerations on the moving contact-line singularity, with application to frictional drag on a slender drop , 1988, Journal of Fluid Mechanics.

[34]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[35]  Joel Koplik,et al.  Molecular dynamics of fluid flow at solid surfaces , 1989 .

[36]  O. Voinov Hydrodynamics of wetting , 1976 .

[37]  B. Dussan,et al.  On the nature of the dynamic contact angle: an experimental study , 1982, Journal of Fluid Mechanics.

[38]  N. K. Adam,et al.  The physics and chemistry of surfaces , 1938 .

[39]  Robert L. Cottington,et al.  DYNAMIC SURFACE PHENOMENA IN THE SPONTANEOUS SPREADING OF OILS ON SOLIDS , 1963 .

[40]  V. Zanden,et al.  An approximate analytical solution of the hydrodynamic problem associated with an advancing liquid-gas contact line , 1991 .

[41]  P. Gennes Wetting: statics and dynamics , 1985 .

[42]  Robbins,et al.  Simulations of contact-line motion: Slip and the dynamic contact angle. , 1989, Physical review letters.

[43]  S. Tejada,et al.  Studies of dynamic contact angles on solids , 1972 .

[44]  L. Scriven,et al.  Hydrodynamic Model of Steady Movement of a Solid / Liquid / Fluid Contact Line , 1971 .

[45]  P. Gennes,et al.  Dynamics of wetting: local contact angles , 1990, Journal of Fluid Mechanics.

[46]  P. Mazur,et al.  Boundary conditions and non-equilibrium thermodynamics , 1976 .

[47]  T. Young III. An essay on the cohesion of fluids , 1805, Philosophical Transactions of the Royal Society of London.

[48]  S. H. Davis,et al.  On the motion of a fluid-fluid interface along a solid surface , 1974, Journal of Fluid Mechanics.

[49]  Banavar,et al.  Molecular dynamics of Poiseuille flow and moving contact lines. , 1988, Physical review letters.

[50]  D. v.,et al.  The moving contact line: the slip boundary condition , 1976, Journal of Fluid Mechanics.