Lattice Boltzmann magnetohydrodynamics with current-dependent resistivity

Lattice Boltzmann magnetohydrodynamics is extended to allow the resistivity to be a prescribed function of the local current density. Current-dependent resistivities are used to model the so-called anomalous resistivity caused by unresolved small-scale processes, such as current-driven plasma microturbulence, that are excluded by the magnetohydrodynamics approximation. These models closely resemble the Smagorinsky eddy viscosity model used in large eddy simulations of hydrodynamic turbulence. Lattice Boltzmann implementations of the Smagorinsky model adjust the collision time in proportion to the local rate of strain, as obtained from the non-equilibrium parts of the hydrodynamic distribution functions. This works successfully even with a single relaxation time collision operator. However, the existing lattice Boltzmann magnetohydrodynamic implementation contains a spurious term in the evolution equation for the magnetic field that violates the divergence-free condition when the relaxation time varies in space. A correct implementation requires a matrix collision operator for the magnetic distribution functions. The relaxation time imposed on the antisymmetric component of the electric field tensor is calculated locally from the non-equilibrium part of the magnetic distribution functions, which determine the current, while the symmetric component remains subject to a uniform relaxation time to suppress the spurious term. The resulting numerical solutions are shown to converge to independent spectral solutions of the magnetohydrodynamic equations, and to preserve the divergence-free condition up to floating point round-off error.

[1]  Sharath S. Girimaji,et al.  LES of turbulent square jet flow using an MRT lattice Boltzmann model , 2006 .

[2]  Lynn F. Gladden,et al.  Simulation of power-law fluid flow through porous media using lattice Boltzmann techniques , 2006 .

[3]  J. Büchner,et al.  3D MHD simulations of electric current development in a rotating sunspot: active region NOAA 8210 , 2011 .

[4]  J. A. Somers Direct simulation of fluid flow with cellular automata and the lattice-Boltzmann equation , 1993 .

[5]  P. Sagaut,et al.  Inertial consistent subgrid model for large-eddy simulation based on the lattice Boltzmann method , 2008 .

[6]  P. Dellar Electromagnetic waves in lattice Boltzmann magnetohydrodynamics , 2010 .

[7]  M. Junk,et al.  Asymptotic analysis of the lattice Boltzmann equation , 2005 .

[8]  M. Ugai,et al.  Magnetic field-line reconnexion by localized enhancement of resistivity: Part 1. Evolution in a compressible MHD fluid , 1977, Journal of Plasma Physics.

[9]  Johan Meyers,et al.  On the model coefficients for the standard and the variational multi-scale Smagorinsky model , 2006, Journal of Fluid Mechanics.

[10]  Magnetic reconnection with anomalous resistivity in two-and-a-half dimensions. I. Quasistationary case , 2005, astro-ph/0508094.

[11]  Dieter Biskamp,et al.  Magnetic reconnection in plasmas , 2000 .

[12]  G. Doolen,et al.  Discrete Boltzmann equation model for nonideal gases , 1998 .

[13]  Shiyi Chen,et al.  A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit , 1998 .

[14]  Three-dimensional lattice Boltzmann model for magnetic reconnection. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  P. Dellar Lattice Boltzmann formulation for Braginskii magnetohydrodynamics , 2011 .

[16]  D Valougeorgis,et al.  Lattice kinetic simulations in three-dimensional magnetohydrodynamics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  L. Luo,et al.  A priori derivation of the lattice Boltzmann equation , 1997 .

[18]  Antonius Otto,et al.  Geospace Environment Modeling (GEM) magnetic reconnection challenge: MHD and Hall MHD—constant and current dependent resistivity models , 2001 .

[19]  Yoshio Sone,et al.  Kinetic Theory and Fluid Dynamics , 2002 .

[20]  Martin Geier,et al.  Lattice Boltzmann large eddy simulation of subcritical flows around a sphere on non-uniform grids , 2011, Comput. Math. Appl..

[21]  Alexander N Gorban,et al.  Stability and stabilization of the lattice Boltzmann method. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Li-Shi Luo,et al.  Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Sabatino Sofia,et al.  A subgrid‐scale resistivity for magnetohydrodynamics , 1994 .

[24]  Paul J. Dellar,et al.  Incompressible limits of lattice Boltzmann equations using multiple relaxation times , 2003 .

[25]  B. Shizgal,et al.  Generalized Lattice-Boltzmann Equations , 1994 .

[26]  Timothy Nigel Phillips,et al.  Lattice Boltzmann models for non-Newtonian flows , 2011 .

[27]  R. Kulsrud Magnetic reconnection: Sweet-Parker versus Petschek , 2000, astro-ph/0007075.

[28]  C. Cercignani The Boltzmann equation and its applications , 1988 .

[29]  P. Dellar Nonhydrodynamic modes and a priori construction of shallow water lattice Boltzmann equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Takaji Inamuro,et al.  Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number , 1997 .

[31]  P. Dellar Moment-Based Boundary Conditions for Lattice Boltzmann Magnetohydrodynamics , 2013 .

[32]  H. R. Strauss,et al.  The coalescence instability and the development of current sheets in two‐dimensional magnetohydrodynamics , 1993 .

[33]  L. Spitzer Physics of fully ionized gases , 1956 .

[34]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[35]  H. Ji,et al.  Experimental Test of the Sweet-Parker Model of Magnetic Reconnection , 1997 .

[36]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[37]  S. Girimaji,et al.  ASSESSMENT OF MAGNETOHYDRODYNAMIC LATTICE BOLTZMANN SCHEMES IN TURBULENCE AND RECTANGULAR JETS , 2008 .

[38]  O. Agullo,et al.  Large eddy simulation of decaying magnetohydrodynamic turbulence with dynamic subgrid-modeling , 2001 .

[39]  P. Dellar Lattice Kinetic Schemes for Magnetohydrodynamics , 2002 .

[40]  B. Chopard,et al.  Lattice Boltzmann Simulations of Blood Flow: Non-Newtonian Rheology and Clotting Processes , 2005 .

[41]  Daniel H. Rothman,et al.  NON-NEWTONIAN FLOW (THROUGH POROUS MEDIA) : A LATTICE-BOLTZMANN METHOD , 1993 .

[42]  Daniele Carati,et al.  Large-eddy simulation of magnetohydrodynamic turbulence , 2002 .

[43]  Takaya Hayashi,et al.  Externally driven magnetic reconnection and a powerful magnetic energy converter , 1979 .

[44]  Ruo Li,et al.  Computing nearly singular solutions using pseudo-spectral methods , 2007, J. Comput. Phys..

[45]  Yan Peng,et al.  Comparison of the lattice Boltzmann and pseudo-spectral methods for decaying turbulence: Low-order statistics , 2010 .

[46]  J. Büchner,et al.  Vlasov Code Simulation of Anomalous Resistivity , 2005 .

[47]  Sam Bennett,et al.  A Lattice Boltzmann model for diffusion of binary gas mixtures , 2010 .

[48]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[49]  L. Luo,et al.  Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation , 1997 .

[50]  Michael Hesse,et al.  RESISTIVE MAGNETOHYDRODYNAMIC SIMULATIONS OF RELATIVISTIC MAGNETIC RECONNECTION , 2010, 1005.4485.

[51]  D. Uzdensky Petschek-like Reconnection with Current-driven Anomalous Resistivity and Its Application to Solar Flares , 2002, astro-ph/0212398.

[52]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[53]  D. Martínez,et al.  Lattice Boltzmann magnetohydrodynamics , 1994, comp-gas/9401002.

[54]  P. Norreys,et al.  Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields. , 2009, Physical review letters.

[55]  Uriel Frisch,et al.  Relation between the lattice Boltzmann equation and the Navier-Stokes equations , 1991 .

[56]  Neil B. Morley,et al.  Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications , 2008 .

[57]  D. Martínez,et al.  Magnetohydrodynamics computations with lattice gas automata , 1992 .

[58]  R. Benzi,et al.  On the Hydrodynamic Behaviour of the Lattice Boltzmann Equation , 1990 .

[59]  Dominique Salin,et al.  Simulations of viscous flows of complex fluids with a Bhatnagar, Gross, and Krook lattice gas , 1996 .

[60]  S. Orszag,et al.  Lattice BGK Models for the Navier-Stokes Equation: Nonlinear Deviation in Compressible Regimes , 1993 .

[61]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[62]  Francesca Mazzia,et al.  A new mesh selection algorithm, based on conditioning, for two-point boundary value codes , 2005 .

[63]  M. J. Pattison,et al.  Dynamic subgrid scale modeling of turbulent flows using lattice-Boltzmann method , 2009, 0901.0593.

[64]  Michael Hesse,et al.  Geospace Environmental Modeling (GEM) magnetic reconnection challenge , 2001 .

[65]  Y. Qian,et al.  Lattice BGK Models for Navier-Stokes Equation , 1992 .

[66]  Shiyi Chen,et al.  A Lattice Boltzmann Subgrid Model for High Reynolds Number Flows , 1994, comp-gas/9401004.

[67]  P. Dellar,et al.  A lattice Boltzmann model for diffusion of binary gas mixtures that includes diffusion slip , 2012 .

[68]  Matthaeus,et al.  Lattice Boltzmann model for simulation of magnetohydrodynamics. , 1991, Physical review letters.

[69]  An analytic theory and formulation of a local magnetohydrodynamic lattice gas model , 1988 .

[70]  P. Norreys,et al.  Electron beam hollowing in laser–solid interactions , 2006 .

[71]  P. Norreys,et al.  Laser-driven fast electron collimation in targets with resistivity boundary. , 2010, Physical review letters.

[72]  P. Cassak,et al.  Scaling of the magnetic reconnection rate with symmetric shear flow , 2011 .

[73]  R. Treumann Origin of resistivity in reconnection , 2001 .

[74]  Michel Hénon,et al.  Viscosity of a Lattice Gas , 1987, Complex Syst..

[75]  P. Dellar Moment equations for magnetohydrodynamics , 2009 .

[76]  Mark Sherlock,et al.  Magnetic collimation of fast electrons produced by ultraintense laser irradiation by structuring the target composition , 2007 .

[77]  H. Strauss,et al.  Reconnection of coalescing magnetic islands , 1999 .

[78]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[79]  M. Scholer,et al.  A simulation study on reconnection and small‐scale plasmoid formation , 1987 .

[80]  J. Boon The Lattice Boltzmann Equation for Fluid Dynamics and Beyond , 2003 .

[81]  Paul J. Dellar,et al.  An interpretation and derivation of the lattice Boltzmann method using Strang splitting , 2013, Comput. Math. Appl..

[82]  P. Moin,et al.  A dynamic subgrid‐scale eddy viscosity model , 1990 .

[83]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .