Complexity and computation of connected zero forcing

Zero forcing is an iterative graph coloring process whereby a colored vertex with a single uncolored neighbor forces that neighbor to be colored. It is NP-hard to find a minimum zero forcing set - a smallest set of initially colored vertices which forces the entire graph to be colored. We show that the problem remains NP-hard when the initially colored set induces a connected subgraph. We also give structural results about the connected zero forcing sets of a graph related to the graph's density, separating sets, and certain induced subgraphs, and we characterize the cardinality of the minimum connected zero forcing sets of unicyclic graphs and variants of cactus and block graphs. Finally, we identify several families of graphs whose connected zero forcing sets define greedoids and matroids.

[1]  Jean Cardinal,et al.  The Price of Connectivity for Vertex Cover , 2014, Discret. Math. Theor. Comput. Sci..

[2]  Michael A. Henning,et al.  Bounds on the connected domination number of a graph , 2013, Discret. Appl. Math..

[3]  Shaun M. Fallat,et al.  On the difference between the maximum multiplicity and path cover number for tree-like graphs , 2005 .

[4]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[5]  Boris Brimkov,et al.  Graphs with Extremal Connected Forcing Numbers , 2017, ArXiv.

[6]  Yair Caro,et al.  Upper bounds on the k-forcing number of a graph , 2014, Discret. Appl. Math..

[7]  James G. Oxley,et al.  Matroid theory , 1992 .

[8]  Shaun M. Fallat,et al.  Zero forcing parameters and minimum rank problems , 2010, 1003.2028.

[9]  Ashkan Aazami,et al.  Hardness results and approximation algorithms for some problems on graphs , 2008 .

[10]  László Lovász,et al.  Mathematical Structures Underlying Greedy Algorithms , 1981, International Symposium on Fundamentals of Computation Theory.

[11]  Hong-Gwa Yeh,et al.  On minimum rank and zero forcing sets of a graph , 2010 .

[12]  Neng Fan,et al.  Solving the Connected Dominating Set Problem and Power Dominating Set Problem by Integer Programming , 2012, COCOA.

[13]  Min Zhao,et al.  Power domination in block graphs , 2006, Theor. Comput. Sci..

[14]  Robert E. Tarjan,et al.  A Note on Finding the Bridges of a Graph , 1974, Inf. Process. Lett..

[15]  Seth A. Meyer Zero forcing sets and bipartite circulants , 2010 .

[16]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[17]  Shaun M. Fallat,et al.  The minimum rank of symmetric matrices described by a graph: A survey☆ , 2007 .

[18]  Vittorio Giovannetti,et al.  Full control by locally induced relaxation. , 2007, Physical review letters.

[19]  Min Zhao,et al.  Power domination in graphs , 2006, Discret. Math..

[20]  Darren D. Row Zero forcing number, path cover number, and maximum nullity of cacti , 2011 .

[21]  Fatemeh Alinaghipour Taklimi Zero Forcing Sets for Graphs , 2013, 1311.7672.

[22]  David E. Roberson,et al.  Fractional zero forcing via three-color forcing games , 2016, Discret. Appl. Math..

[23]  Leslie Hogben,et al.  Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph , 2012 .

[24]  Michael A. Henning,et al.  Bounds on the Connected Forcing Number of a Graph , 2018, Graphs Comb..

[25]  W. Haemers Zero forcing sets and minimum rank of graphs , 2008 .

[26]  M. Khosravi,et al.  Connected zero forcing sets and connected propagation time of graphs , 2017, 1702.06711.

[27]  Linda Eroh,et al.  Metric dimension and zero forcing number of two families of line graphs , 2012, 1207.6127.

[28]  Baoyindureng Wu,et al.  Proof of a conjecture on the zero forcing number of a graph , 2016, Discret. Appl. Math..

[29]  J. A. McHugh,et al.  On covering the points of a graph with point disjoint paths , 1974 .

[30]  Fabrizio Grandoni,et al.  Solving Connected Dominating Set Faster than 2 n , 2006, Algorithmica.

[31]  A. Berman,et al.  Zero forcing for sign patterns , 2013, 1307.2198.

[32]  Pauline van den Driessche,et al.  Parameters Related to Tree‐Width, Zero Forcing, and Maximum Nullity of a Graph , 2013, J. Graph Theory.

[33]  Yair Caro,et al.  Dynamic approach to k-forcing , 2014, 1405.7573.

[34]  Michael A. Henning,et al.  Domination in Graphs Applied to Electric Power Networks , 2002, SIAM J. Discret. Math..

[35]  Darren D. Row A technique for computing the zero forcing number of a graph with a cut-vertex , 2012 .

[36]  Wei Wang,et al.  Complexity and algorithms for the connected vertex cover problem in 4-regular graphs , 2017, Appl. Math. Comput..

[37]  Jean-Charles Delvenne,et al.  Zero forcing number, constraint matchings and strong structural controllability , 2014, ArXiv.

[38]  Nathan Warnberg,et al.  Positive semidefinite propagation time , 2016, Discret. Appl. Math..

[39]  AmosDavid,et al.  Upper bounds on the k -forcing number of a graph , 2015 .

[40]  Steve Butler,et al.  Using variants of zero forcing to bound the inertia set of a graph , 2015 .

[41]  S. Hedetniemi,et al.  On the hamiltonian completion problem , 1974 .

[42]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[43]  Simone Severini,et al.  Logic circuits from zero forcing , 2011, Natural Computing.

[44]  Fred S. Roberts,et al.  Irreversible k-threshold processes: Graph-theoretical threshold models of the spread of disease and of opinion , 2009, Discret. Appl. Math..

[45]  Charles R. Johnson,et al.  The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree , 1999 .

[46]  Michael Young,et al.  Positive semidefinite zero forcing , 2013, Linear Algebra and its Applications.

[47]  Sarah Meyer,et al.  Propagation time for zero forcing on a graph , 2012, Discret. Appl. Math..

[48]  J. Hopcroft,et al.  Algorithm 447: efficient algorithms for graph manipulation , 1973, CACM.

[49]  Joyati Debnath,et al.  Minimum rank of skew-symmetric matrices described by a graph , 2010 .

[50]  Raphael Yuster,et al.  Connected Domination and Spanning Trees with Many Leaves , 2000, SIAM J. Discret. Math..

[51]  Shaun M. Fallat,et al.  Computation of minimal rank and path cover number for certain graphs , 2004 .

[52]  Dieter Rautenbach,et al.  Extremal values and bounds for the zero forcing number , 2016, Discret. Appl. Math..

[53]  P. Nylen,et al.  Minimum-rank matrices with prescribed graph , 1996 .

[54]  Boris Brimkov,et al.  Computational Approaches for Zero Forcing and Related Problems , 2019, Eur. J. Oper. Res..

[55]  Daniela Ferrero,et al.  Power domination and zero forcing , 2015 .

[56]  Boting Yang Fast-mixed searching and related problems on graphs , 2013, Theor. Comput. Sci..

[57]  Eunjeong Yi,et al.  On Zero Forcing Number of Permutation Graphs , 2012, COCOA.

[58]  Boris Brimkov,et al.  Characterizations of the Connected Forcing Number of a Graph , 2016, ArXiv.

[59]  Kitty Meeks,et al.  Spanning Trees and the Complexity of Flood-Filling Games , 2012, Theory of Computing Systems.