The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia

[1]  Shaun T. Brown,et al.  Subduction controls of Hf and Nd isotopes in lavas of the Aleutian island arc , 2010 .

[2]  K. Fischer,et al.  he global range of subduction zone thermal models , 2010 .

[3]  T. M. Harrison,et al.  Constraints on Hadean geodynamics from mineral inclusions in > 4 Ga zircons , 2010 .

[4]  D. Nelson,et al.  Reworking of Earth's first crust: Constraints from Hf isotopes in Archean zircons from Mt. Narryer, Australia , 2010 .

[5]  A. Fichtner,et al.  Subduction of continental lithosphere in the Banda Sea region: Combining evidence from full waveform tomography and isotope ratios , 2010 .

[6]  W. Westrenen,et al.  Deep mantle storage of the Earth’s missing niobium in late-stage residual melts from a magma ocean , 2010 .

[7]  J. Vervoort,et al.  Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons , 2010 .

[8]  I. Wright,et al.  Sources of constructional cross‐chain volcanism in the southern Havre Trough: New insights from HFSE and REE concentration and isotope systematics , 2010 .

[9]  Peter A. Cawood,et al.  The generation and evolution of the continental crust , 2010, Journal of the Geological Society.

[10]  J. Mavrogenes,et al.  Tungsten isotopes as tracers of core-mantle interactions: The influence of subducted sediments , 2010 .

[11]  A. Kent,et al.  Across‐arc geochemical trends in the Izu‐Bonin arc: Contributions from the subducting slab, revisited , 2010 .

[12]  O. Nebel,et al.  Isotope Dilution Determinations of Lu, Hf, Zr, Ta and W, and Hf Isotope Compositions of NIST SRM 610 and 612 Glass Wafers , 2009 .

[13]  N. Mattielli,et al.  The “zircon effect” as recorded by the chemical and Hf isotopic compositions of Lesser Antilles forearc sediments , 2009 .

[14]  T. Plank,et al.  Emerging geothermometers for estimating slab surface temperatures , 2009 .

[15]  I. Bindeman,et al.  New insights into the origin of O–Hf–Os isotope signatures in arc lavas from Tonga–Kermadec , 2009 .

[16]  D. Rubatto,et al.  Accessory phase control on the trace element signature of sediment melts in subduction zones , 2009 .

[17]  J. Valley,et al.  Primitive oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge , 2009 .

[18]  T. Harrison The Hadean Crust: Evidence from >4 Ga Zircons , 2009 .

[19]  T. Harrison,et al.  Lu–Hf zircon evidence for rapid lunar differentiation , 2009 .

[20]  T. Plank,et al.  Hf‐Nd input flux in the Izu‐Mariana subduction zone and recycling of subducted material in the mantle , 2009 .

[21]  T. Harrison,et al.  Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions , 2008, Nature.

[22]  W. Bleeker,et al.  Episodic, mafic crust formation from 4.5 to 2.8 Ga: New evidence from detrital zircons, Slave craton, Canada , 2008 .

[23]  D. Garbe‐Schönberg,et al.  Mobility of tungsten in subduction zones , 2008 .

[24]  J. Miller,et al.  Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS , 2008 .

[25]  A. Bouvier,et al.  The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets , 2008 .

[26]  S. Wilde,et al.  Lithium in Jack Hills zircons: Evidence for extensive weathering of Earth's earliest crust , 2008 .

[27]  T. Harrison,et al.  Early (≥ 4.5 Ga) formation of terrestrial crust: Lu–Hf, δ18O, and Ti thermometry results for Hadean zircons , 2008 .

[28]  J. Blundy,et al.  Trace Element Partitioning and Accessory Phase Saturation during H2O-Saturated Melting of Basalt with Implications for Subduction Zone Chemical Fluxes , 2008 .

[29]  F. Albarède,et al.  Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust , 2008 .

[30]  S. Wilde,et al.  Hadean diamonds in zircon from Jack Hills, Western Australia , 2007, Nature.

[31]  J. Pearce,et al.  Hf Nd evidence for the origin and distribution of mantle domains in the SW Pacific , 2007 .

[32]  D. Rubatto,et al.  Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks , 2007 .

[33]  T. M. Harrison,et al.  Constraints on Hadean zircon protoliths from oxygen isotopes, Ti‐thermometry, and rare earth elements , 2007 .

[34]  T. Kleine,et al.  Hf-Nd-Pb isotope evidence from Permian arc rocks for the long-term presence of the Indian-Pacific mantle boundary in the SW Pacific , 2007 .

[35]  C. M. Gray,et al.  Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon , 2007, Science.

[36]  T. Barry,et al.  Hf isotope evidence for selective mobility of high-field-strength elements in a subduction setting: South Sandwich Islands , 2006 .

[37]  F. Bea,et al.  Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada , 2006, Mineralogical Magazine.

[38]  J. Adam,et al.  Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour , 2006 .

[39]  M. Whitehouse,et al.  Oxygen Isotopic Signature of 4.4-3.9 Ga Zircons as a Monitor of Differentiation Processes on the Moon , 2006 .

[40]  C. Hawkesworth,et al.  Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution , 2006 .

[41]  C. Hawkesworth,et al.  Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon , 2006, Nature.

[42]  T. M. Harrison,et al.  Heterogeneous Hadean Hafnium: Evidence of Continental Crust at 4.4 to 4.5 Ga , 2005, Science.

[43]  M. Basei,et al.  4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon , 2005 .

[44]  J. Valley A cool early Earth? , 2005, Scientific American.

[45]  T. Pettke,et al.  Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth , 2005, Nature.

[46]  J. Gill,et al.  Hafnium systematics of the Mariana arc: Evidence for sediment melt and residual phases , 2005 .

[47]  S. Wilde,et al.  Magmatic δ18O in 4400–3900 Ma detrital zircons: A record of the alteration and recycling of crust in the Early Archean , 2005 .

[48]  R. Maury,et al.  Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source , 2005 .

[49]  I. Zulkarnain,et al.  Australia and Indonesia in collision: geochemical sources of magmatism , 2005 .

[50]  G. Wörner,et al.  Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas , 2004 .

[51]  J. Vervoort,et al.  Lu-Hf and Sm-Nd isotopic systematics in chondrites and their constraints on the Lu-Hf properties of the Earth , 2004 .

[52]  V. Salters,et al.  Composition of the depleted mantle , 2003 .

[53]  T. Kleine,et al.  Evolution of Planetary Cores and the Earth-Moon System from Nb/Ta Systematics , 2003, Science.

[54]  K. Mezger,et al.  Nb/Ta, Zr/Hf and REE in the depleted mantle: implications for the differentiation history of the crust-mantle system , 2003 .

[55]  C. Langmuir,et al.  Sr‐Nd‐Pb‐Hf Isotope Results from ODP Leg 187: Evidence for Mantle Dynamics of the Australian‐Antarctic Discordance and Origin of the Indian MORB Source , 2002 .

[56]  R. Hall Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations , 2002 .

[57]  K. Mezger,et al.  Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC‐ICPMS measurements , 2001 .

[58]  S. Wilde,et al.  Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: Ion microprobe evidence for high δ 18 O continental crust and oceans in the Early Archean , 2001 .

[59]  S. Eggins,et al.  Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes , 2001 .

[60]  J. Blichert‐Toft,et al.  A hafnium isotope and trace element perspective on melting of the depleted mantle , 2001 .

[61]  B. Wood,et al.  High field strength element/rare earth element fractionation during partial melting in the presence of garnet: Implications for identification of mantle heterogeneities , 2001 .

[62]  J. Dyment,et al.  Magnetic lineations constraints for the back-arc opening of the Late Neogene South Banda Basin (eastern Indonesia) , 2001 .

[63]  A. Boyce,et al.  Oxygen isotope systematics of the Banda Arc: Low delta O-18 despite involvement of subducted continental material in magma genesis. , 2001 .

[64]  T. M. Harrison,et al.  Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago , 2001, Nature.

[65]  Simon A. Wilde,et al.  Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago , 2001, Nature.

[66]  Marie C. Johnson,et al.  Dehydration and melting experiments constrain the fate of subducted sediments , 2000 .

[67]  C. Langmuir,et al.  Distinguishing melt and fluid subduction components in Umnak Volcanics, Aleutian Arc , 2000 .

[68]  G. Jenner,et al.  Rutile/melt partition coefficients for trace elements and an assessment of the influence of rutile on the trace element characteristics of subduction zone magmas , 2000 .

[69]  A. Crawford,et al.  Oxygen Isotope Geochemistry of Oceanic-Arc Lavas , 2000 .

[70]  S. Noble,et al.  Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems , 1999 .

[71]  F. Albarède,et al.  Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system , 1999 .

[72]  J. Blichert‐Toft,et al.  Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time , 1999 .

[73]  J. Cornée,et al.  A Neogene back-arc origin for the Banda Sea basins: geochemical and geochronological constraints from the Banda ridges (East Indonesia) , 1998 .

[74]  K. Johnson Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures , 1998 .

[75]  S. Eggins,et al.  Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes , 1998 .

[76]  A. D. Saunders,et al.  High precision Hf isotope measurements of MORB and OIB by thermal ionisation mass spectrometry: insights into the depleted mantle , 1998 .

[77]  W. White,et al.  HF ISOTOPE CONSTRAINTS ON MANTLE EVOLUTION , 1998 .

[78]  F. Albarède,et al.  Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS , 1997 .

[79]  J. Varekamp,et al.  U-series, SrNdPb isotope and trace-element systematics across an active island arc-continent collision zone: Implications for element transfer at the slab-wedge interface , 1997 .

[80]  R. Harmon,et al.  Resolution of the effects of crustal assimilation, sediment subduction, and fluid transport in island arc magmas: PbSrNdO isotope geochemistry of Grenada, Lesser Antilles , 1996 .

[81]  J. Vervoort,et al.  Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites , 1996 .

[82]  F. Ryerson,et al.  Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids , 1995 .

[83]  W. White,et al.  Strontium, neodymium, and lead isotopic and trace-element signatures of the East indonesian sediments: provenance and implications for banda arc magma genesis , 1995 .

[84]  K. H. Wedepohl,et al.  The Composition of the Continental Crust , 1995 .

[85]  J. Varekamp,et al.  Sr-Nd-Pb isotope systematics of the Banda Arc, Indonesia: Combined subduction and assimilation of continental material , 1993 .

[86]  J. Hoogewerff,et al.  Geochemical and tectonic relationships in the east Indonesian arc-continent collision region: Implications for the subduction of the Australian passive margin , 1993 .

[87]  D. Hilton,et al.  Mapping magma sources in the east Sunda-Banda arcs, Indonesia: Constraints from helium isotopes , 1992 .

[88]  S. Hart,et al.  The mantle sources of ocean ridges, islands and arcs: the Hf-isotope connection , 1991 .

[89]  M. McCulloch,et al.  Geochemical and geodynamical constraints on subduction zone magmatism , 1991 .

[90]  R. Varne,et al.  Magma source components in an arc-continent collision zone: the Flores-Lembata sector, Sunda arc, Indonesia , 1990 .

[91]  R. Mccaffrey Teleseismic investigation of the January 22, 1988 Tennant Creek, Australia, earthquakes , 1989 .

[92]  S. Goldstein,et al.  Use and abuse of crust-formation ages , 1987 .

[93]  Chao-Shing Lee,et al.  The Banda–Celebes–Sulu basin: a trapped piece of Cretaceous–Eocene oceanic crust? , 1986, Nature.

[94]  R. Powell,et al.  Source component mixing in the regions of arc magma generation , 1986 .

[95]  W. White,et al.  HfNdSr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution , 1984 .

[96]  T. M. Harrison,et al.  Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types , 1983 .

[97]  G. Purdy,et al.  Arc-Continent Collision in Banda Sea Region , 1980 .

[98]  D. Whitford,et al.  Origin of late-cenozoic lavas from the Banda arc, Indonesia: Trace element and Sr isotope evidence , 1979 .

[99]  C. S. Hutchison,et al.  Banda arc of eastern indonesia: Petrology and geochemistry of the volcanic rocks , 1978 .

[100]  D. James,et al.  Oxygen isotopes and the origin of high-87Sr/86Sr andesites , 1978 .

[101]  R. Lorenz,et al.  The Hadean Crust : Evidence from > 4 Ga Zircons , 2010 .

[102]  N. Arndt,et al.  Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array , 2008 .

[103]  K. Condie,et al.  When Did Plate Tectonics Begin on Planet Earth , 2008 .

[104]  P. Kelemen,et al.  One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust , 2005 .

[105]  S. A. Wildeb,et al.  Magmatic y 18 O in 4400 – 3900 Ma detrital zircons : A record of the alteration and recycling of crust in the Early Archean , 2005 .

[106]  M. J. Bergen,et al.  Subducted upper and lower continental crust contributes to magmatism in the collision sector of the Sunda-Banda arc, Indonesia , 2004 .

[107]  R. Rudnick,et al.  3.01 – Composition of the Continental Crust , 2003 .

[108]  F. McDermott,et al.  Mantle and Slab Contributions in ARC Magmas , 1993 .

[109]  C. Hedge,et al.  Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes , 1982 .