Numerical simulatin of supernova-relevant laser-driven hydro experiments on OMEGA
暂无分享,去创建一个
R. P. Drake | H. F. Robey | D. Leibrandt | H. Robey | D. Braun | A. Miles | M. J. Edwards | David G. Braun | D. R. Leibrandt | A R Miles
[1] U. Alon,et al. Potential flow models of Rayleigh–Taylor and Richtmyer–Meshkov bubble fronts , 1994 .
[2] S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability , 1961 .
[3] P. Dimotakis. The mixing transition in turbulent flows , 2000, Journal of Fluid Mechanics.
[4] G. Zimmerman,et al. A new quotidian equation of state (QEOS) for hot dense matter , 1988 .
[5] H. Kull. Theory of the Rayleigh-Taylor instability , 1991 .
[6] Hecht,et al. Power Laws and Similarity of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Fronts at All Density Ratios. , 1995, Physical review letters.
[7] S. P. Gill,et al. Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .
[8] R. P. Drake,et al. The time scale for the transition to turbulence in a high Reynolds number, accelerated flow , 2003 .
[9] Supernova-relevant Hydrodynamic Instability Experiments on the Nova Laser , 1997 .
[10] Stephen D. Jacobs,et al. Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system , 1996 .
[11] R. D. Richtmyer. Taylor instability in shock acceleration of compressible fluids , 1960 .
[12] R. P. Drake,et al. Development of a Laboratory Environment to Test Modelsof Supernova Remnant Formation , 1998 .
[13] R. London,et al. Supernova hydrodynamics experiments on the Nova laser , 1997 .
[14] J. Lindl,et al. Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive , 1998 .
[15] G. Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[16] R. Chevalier. The hydrodynamics of type II supernovae. , 1976 .
[17] B. Fryxell,et al. Instabilities and nonradial motion in SN 1987A , 1989 .
[18] G. Dimonte. Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation , 2000 .
[19] P. A. Rosen,et al. Radiation driven planar foil instability and mix experiments at the AWE HELEN laser , 1990 .
[20] Uri Alon,et al. Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws , 2001 .
[21] K. Meyer,et al. Numerical Investigation of the Stability of a Shock‐Accelerated Interface between Two Fluids , 1972 .
[22] Hideaki Takabe,et al. A review of astrophysics experiments on intense lasers , 2000 .
[23] R. P. Drake,et al. Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics , 1999 .
[24] Steven W. Haan,et al. Modeling of Nova indirect drive Rayleigh–Taylor experiments , 1994 .
[25] S. Skupsky,et al. Modeling hydrodynamic instabilities in inertial confinement fusion targets , 2000 .
[26] W. Hillebrandt,et al. The supernova 1987A in the Large Magellanic Cloud , 1989 .
[27] Dave Braun,et al. Effect of shock proximity on Richtmyer–Meshkov growth , 2003 .