Enhancement of the anti-damping spin torque efficacy of platinum by interface modification

We report a strong enhancement of the efficacy of the spin Hall effect (SHE) of Pt for exerting anti-damping spin torque on an adjacent ferromagnetic layer by the insertion of ≈0.5 nm layer of Hf between a Pt film and a thin, ≤2 nm, Fe60Co20B20 ferromagnetic layer. This enhancement is quantified by measurement of the switching current density when the ferromagnetic layer is the free electrode in a magnetic tunnel junction. The results are explained as the suppression of spin pumping through a substantial decrease in the effective spin-mixing conductance of the interface, but without a concomitant reduction of the ferromagnet's absorption of the SHE generated spin current.

[1]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[2]  C. Marrows,et al.  Role of B diffusion in the interfacial Dzyaloshinskii-Moriya interaction in Ta / Co 20 F e 60 B 20 / MgO nanowires , 2015 .

[3]  A. Barman,et al.  Thickness dependence of spin torque ferromagnetic resonance in Co75Fe25/Pt bilayer films , 2014 .

[4]  D. Ralph,et al.  Magnetic oscillations driven by the spin Hall effect in 3-terminal magnetic tunnel junction devices. , 2012, Physical review letters.

[5]  D. Ritchie,et al.  Electric control of the spin Hall effect by intervalley transitions. , 2014, Nature materials.

[6]  A. Hoffmann Spin Hall Effects in Metals , 2013, IEEE Transactions on Magnetics.

[7]  S. Urazhdin,et al.  Magnetic nano-oscillator driven by pure spin current. , 2012, Nature materials.

[8]  D. Ralph,et al.  Spin transfer torque devices utilizing the giant spin Hall effect of tungsten , 2012, 1208.1711.

[9]  T. Jungwirth,et al.  Spin Hall effect devices. , 2012, Nature materials.

[10]  A. N’Diaye,et al.  Tailoring the chirality of magnetic domain walls by interface engineering , 2013, Nature Communications.

[11]  J. Pearson,et al.  Determination of the Pt spin diffusion length by spin-pumping and spin Hall effect , 2013 .

[12]  P W Brouwer,et al.  Current-induced transverse spin-wave instability in a thin nanomagnet. , 2004, Physical review letters.

[13]  Virginia O. Lorenz,et al.  Quantifying interface and bulk contributions to spin–orbit torque in magnetic bilayers , 2014, Nature Communications.

[14]  Yiyi Li,et al.  First-principles studies of structural stabilities and enthalpies of formation of refractory intermetallics: TM and TM3 (T ¼ Ti, Zr, Hf; M ¼ Ru, Rh, Pd, Os, Ir, Pt) , 2012 .

[15]  Enhancement of Perpendicular Magnetic Anisotropy and Transmission of Spin-Hall-Effect-Induced Spin Currents by a Hf Spacer Layer in W/Hf/CoFeB/MgO Layer , 2014, 1401.4617.

[16]  Eiji Saitoh,et al.  Theory of spin Hall magnetoresistance , 2013, 1302.1352.

[17]  D. Ralph,et al.  Spin-torque ferromagnetic resonance induced by the spin Hall effect. , 2010, Physical review letters.

[18]  Jonathan Z. Sun,et al.  Spin Hall effect tunnelling spectroscopy , 2014, Nature Physics.

[19]  L. Pileggi,et al.  Novel STT-MTJ Device Enabling All-Metallic Logic Circuits , 2012, IEEE Transactions on Magnetics.

[20]  J. H. Franken,et al.  Domain wall depinning governed by the spin Hall effect. , 2012, Nature materials.

[21]  Satoru Emori,et al.  Current-driven domain wall motion along high perpendicular anisotropy multilayers: The role of the Rashba field, the spin Hall effect, and the Dzyaloshinskii-Moriya interaction , 2013 .

[22]  A. Brataas,et al.  Enhanced gilbert damping in thin ferromagnetic films. , 2001, Physical review letters.

[23]  Mt Johnson,et al.  Magnetic anisotropy in metallic multilayers , 1996 .

[24]  Gus L. W. Hart,et al.  Hafnium binary alloys from experiments and first principles , 2009, 0907.5131.

[25]  J. Hirsch Spin Hall Effect , 1999, cond-mat/9906160.

[26]  Role of spin mixing conductance in spin pumping: Enhancement of spin pumping efficiency in Ta/Cu/Py structures , 2013, 1311.6098.

[27]  Jonathan Z. Sun Spin-current interaction with a monodomain magnetic body: A model study , 2000 .

[28]  D C Ralph,et al.  Thermally activated magnetic reversal induced by a spin-polarized current. , 2002, Physical review letters.

[29]  L. You,et al.  Spin Hall effect clocking of nanomagnetic logic without a magnetic field. , 2014, Nature nanotechnology.

[30]  L. Fitting Kourkoutis,et al.  Atomic-Scale Chemical Imaging of Composition and Bonding by Aberration-Corrected Microscopy , 2008, Science.

[31]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[32]  J Leuthold,et al.  Nanomagnonic devices based on the spin-transfer torque. , 2014, Nature nanotechnology.

[33]  S. Urazhdin,et al.  Synchronization of spin Hall nano-oscillators to external microwave signals , 2014, Nature Communications.

[34]  M. Stiles,et al.  Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling , 2013, 1301.4513.

[35]  Spin transport parameters in metallic multilayers determined by ferromagnetic resonance measurements of spin pumping , 2013, 1301.5861.

[36]  Michel Dyakonov,et al.  Current-induced spin orientation of electrons in semiconductors , 1971 .

[37]  Hideo Ohno,et al.  Spatial control of magnetic anisotropy for current induced domain wall injection in perpendicularly magnetized CoFeB|MgO nanostructures , 2012 .