Structural Changes of Scandia‐Doped Zirconia Solid Solutions: Rietveld Analysis and Raman Scattering
暂无分享,去创建一个
Masahiro Yoshimura | Masatomo Yashima | Masato Kakihana | M. Kakihana | M. Yoshimura | M. Yashima | Hirotaka Fujimori | H. Fujimori
[1] M. Kakihana,et al. Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application , 1996 .
[2] M. Kakihana,et al. Synthesis of metastable tetragonal (t′) zirconia-calcia solid solution by pyrolysis of organic precursors and coprecipitation route , 1996 .
[3] Suzuki,et al. Structural changes of ZrO2-CeO2 solid solutions around the monoclinic-tetragonal phase boundary. , 1995, Physical review. B, Condensed matter.
[4] Y. Tajima,et al. Low Temperature Operation of Solid Oxide Fuel Cell with a ZrO[sub 2]-Sc[sub 2]O[sub 3]-Al[sub 2]O[sub 3] System Electrolyte , 1994 .
[5] M. Kakihana,et al. Oxygen-induced structural change of the tetragonal phase around the tetragonal–cubic phase boundary in ZrO2–YO1.5 solid solutions , 1994 .
[6] Masahiro Yoshimura,et al. Raman Scattering Study of Cubic–Tetragonal Phase Transition in Zr1−xCexO2 Solid Solution , 1994 .
[7] M. Yoshimura,et al. Determination of cubic‐tetragonal phase boundary in Zr1−XYXO2−X/2 solid solutions by Raman spectroscopy , 1993 .
[8] M. Yoshimura,et al. Tetragonal→←Monoclinic Phase Transition Temperature of Rare-Earth-Doped Zirconia Prepared by Arc Melting , 1993 .
[9] M. Yoshimura,et al. High‐Temperature X‐ray Study of the Cubic‐Tetragonal Diffusionless Phase Transition in the ZrO2─ErO1.5 System: I, Phase Change between Two Forms of a Tetragonal Phase, t′‐ZrO2 and t″‐ZrO2, in the Compositionally Homogeneous 14 mol% ErO1.5‐ZrO2 , 1993 .
[10] M. Yoshimura,et al. High-Temperature X-ray Study of the Cubic–Tetragonal Diffusionless Phase Transition in the ZrO2─ErO1.5System: II, Temperature Dependences of Oxygen Ion Displacement and Lattice Parameter of Compositionally Homogeneous 12 mol% ErO1.5─ZrO2 , 1993 .
[11] A. Yamaji,et al. Structural phase transition and ion conductivity in 0.88ZrO2−0.12Sc2O3 , 1992 .
[12] M. Yoshimura,et al. Application of an Ion‐Packing Model Based on Defect Clusters to Zirconia Solid Solutions: II, Applicability of Vegard's Law , 1992 .
[13] F. Lange,et al. Metastable Phase Selection and Partitioning in ZrO2—MgO Processed from Liquid Precursors , 1992 .
[14] M. Yoshimura,et al. Effects of Noncompositional Inhomogeneity on t→m Phase Transformation During Grinding of Various Rare‐Earth‐Doped Zirconias , 1991 .
[15] S. Udagawa,et al. Phase Transformation and Lattice Constants of Zirconia Solid Solutions in the System Y2O3-CeO2-ZrO2 , 1991 .
[16] T. Vogt,et al. Neutron powder investigation of the monoclinic to tetragonal phase transformation in undoped zirconia , 1990 .
[17] M. Yoshimura,et al. Formation of diffusionlessly transformed tetragonal phases by rapid quenching of melts in ZrO2-RO1.5 systems (R = rare earths) , 1990 .
[18] H. Toraya. Effect of YO1.5 Dopant on Unit‐Cell Parameters of ZrO2 at Low Contents of YO1.5 , 1989 .
[19] S. Badwal. Effect of dopant concentration on electrical conductivity in the Sc2O3-ZrO2 system , 1987 .
[20] T. Sakuma,et al. The cubic-to-β martensitic transformation in ZrO2-Sc2O3 , 1986 .
[21] H. Toraya,et al. Whole-powder-pattern fitting without reference to a structural model: application to X-ray powder diffraction data , 1986 .
[22] R. Young,et al. Suggested guidelines for the publication of Rietveld analyses and pattern decomposition studies , 1982 .
[23] R. Ruh,et al. The System Zirconia-Scandia , 1977 .
[24] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[25] W. W. Barker,et al. A high-temperature neutron diffraction study of pure and scandia-stabilized zirconia , 1973 .
[26] F. Spiridonov,et al. On the phase relations and the electrical conductivity in the system ZrO2Sc2O3 , 1970 .
[27] E. Subbarao,et al. Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400°C , 1969 .
[28] D. Strickler,et al. Electrical Conductivity in the ZrO2-Rich Region of Several M2O3—ZrO2 Systems , 1965 .
[29] D. K. Smith,et al. The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2 , 1965 .
[30] I. Cohen,et al. A metallographic and X-ray study of the UO2-ZrO2 system , 1963 .
[31] G. Teufer,et al. The crystal structure of tetragonal ZrO2 , 1962 .
[32] M. Kakihana,et al. Size and Charge Effects of Dopant M on the Unit‐Cell Parameters of Monoclinic Zirconia Solid Solutions Zr0.98M0.02O2 –δ (M = Ce, La, Nd, Sm, Y, Er, Yb, Sc, Mg, Ca) , 1997 .
[33] M. Kakihana,et al. Determination of tetragonal-cubic phase boundary of Zr1-XRXO2-X/2 (R = Nd, Sm, Y, Er and Yb) BY Raman scattering , 1996 .