Structural Changes of Scandia‐Doped Zirconia Solid Solutions: Rietveld Analysis and Raman Scattering

Powder X-ray diffractometry (XRD) and Raman scattering measurements were used to study the structural changes of compositionally homogeneous metastable ZrO2 solid solutions induced by ScO1.5 doping. The crystal structures of monoclinic, tetragonal, cubic, and rhombohedral (Sc2Zr7O17, s-phase) solid-solution phases have been refined by using the Rietveld analysis of the XRD data at room temperature of arc-melted ZrO2-XScO1.5 (X= 0, 2, …, 20, and 22 mol%) samples. The results can be interpreted as indicating that the structures of the monoclinic and tetragonal phases approach those of the tetragonal and cubic phases, respectively, by ScO1.5 doping. Raman scattering, as well as XRD, was useful to investigate the phase assemblage. Moreover, we could obtain Raman spectra of the s-phase probably for the first time.

[1]  M. Kakihana,et al.  Metastable-stable phase diagrams in the zirconia-containing systems utilized in solid-oxide fuel cell application , 1996 .

[2]  M. Kakihana,et al.  Synthesis of metastable tetragonal (t′) zirconia-calcia solid solution by pyrolysis of organic precursors and coprecipitation route , 1996 .

[3]  Suzuki,et al.  Structural changes of ZrO2-CeO2 solid solutions around the monoclinic-tetragonal phase boundary. , 1995, Physical review. B, Condensed matter.

[4]  Y. Tajima,et al.  Low Temperature Operation of Solid Oxide Fuel Cell with a ZrO[sub 2]-Sc[sub 2]O[sub 3]-Al[sub 2]O[sub 3] System Electrolyte , 1994 .

[5]  M. Kakihana,et al.  Oxygen-induced structural change of the tetragonal phase around the tetragonal–cubic phase boundary in ZrO2–YO1.5 solid solutions , 1994 .

[6]  Masahiro Yoshimura,et al.  Raman Scattering Study of Cubic–Tetragonal Phase Transition in Zr1−xCexO2 Solid Solution , 1994 .

[7]  M. Yoshimura,et al.  Determination of cubic‐tetragonal phase boundary in Zr1−XYXO2−X/2 solid solutions by Raman spectroscopy , 1993 .

[8]  M. Yoshimura,et al.  Tetragonal→←Monoclinic Phase Transition Temperature of Rare-Earth-Doped Zirconia Prepared by Arc Melting , 1993 .

[9]  M. Yoshimura,et al.  High‐Temperature X‐ray Study of the Cubic‐Tetragonal Diffusionless Phase Transition in the ZrO2─ErO1.5 System: I, Phase Change between Two Forms of a Tetragonal Phase, t′‐ZrO2 and t″‐ZrO2, in the Compositionally Homogeneous 14 mol% ErO1.5‐ZrO2 , 1993 .

[10]  M. Yoshimura,et al.  High-Temperature X-ray Study of the Cubic–Tetragonal Diffusionless Phase Transition in the ZrO2─ErO1.5System: II, Temperature Dependences of Oxygen Ion Displacement and Lattice Parameter of Compositionally Homogeneous 12 mol% ErO1.5─ZrO2 , 1993 .

[11]  A. Yamaji,et al.  Structural phase transition and ion conductivity in 0.88ZrO2−0.12Sc2O3 , 1992 .

[12]  M. Yoshimura,et al.  Application of an Ion‐Packing Model Based on Defect Clusters to Zirconia Solid Solutions: II, Applicability of Vegard's Law , 1992 .

[13]  F. Lange,et al.  Metastable Phase Selection and Partitioning in ZrO2—MgO Processed from Liquid Precursors , 1992 .

[14]  M. Yoshimura,et al.  Effects of Noncompositional Inhomogeneity on t→m Phase Transformation During Grinding of Various Rare‐Earth‐Doped Zirconias , 1991 .

[15]  S. Udagawa,et al.  Phase Transformation and Lattice Constants of Zirconia Solid Solutions in the System Y2O3-CeO2-ZrO2 , 1991 .

[16]  T. Vogt,et al.  Neutron powder investigation of the monoclinic to tetragonal phase transformation in undoped zirconia , 1990 .

[17]  M. Yoshimura,et al.  Formation of diffusionlessly transformed tetragonal phases by rapid quenching of melts in ZrO2-RO1.5 systems (R = rare earths) , 1990 .

[18]  H. Toraya Effect of YO1.5 Dopant on Unit‐Cell Parameters of ZrO2 at Low Contents of YO1.5 , 1989 .

[19]  S. Badwal Effect of dopant concentration on electrical conductivity in the Sc2O3-ZrO2 system , 1987 .

[20]  T. Sakuma,et al.  The cubic-to-β martensitic transformation in ZrO2-Sc2O3 , 1986 .

[21]  H. Toraya,et al.  Whole-powder-pattern fitting without reference to a structural model: application to X-ray powder diffraction data , 1986 .

[22]  R. Young,et al.  Suggested guidelines for the publication of Rietveld analyses and pattern decomposition studies , 1982 .

[23]  R. Ruh,et al.  The System Zirconia-Scandia , 1977 .

[24]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[25]  W. W. Barker,et al.  A high-temperature neutron diffraction study of pure and scandia-stabilized zirconia , 1973 .

[26]  F. Spiridonov,et al.  On the phase relations and the electrical conductivity in the system ZrO2Sc2O3 , 1970 .

[27]  E. Subbarao,et al.  Axial thermal expansion of ZrO2 and HfO2 in the range room temperature to 1400°C , 1969 .

[28]  D. Strickler,et al.  Electrical Conductivity in the ZrO2-Rich Region of Several M2O3—ZrO2 Systems , 1965 .

[29]  D. K. Smith,et al.  The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2 , 1965 .

[30]  I. Cohen,et al.  A metallographic and X-ray study of the UO2-ZrO2 system , 1963 .

[31]  G. Teufer,et al.  The crystal structure of tetragonal ZrO2 , 1962 .

[32]  M. Kakihana,et al.  Size and Charge Effects of Dopant M on the Unit‐Cell Parameters of Monoclinic Zirconia Solid Solutions Zr0.98M0.02O2 –δ (M = Ce, La, Nd, Sm, Y, Er, Yb, Sc, Mg, Ca) , 1997 .

[33]  M. Kakihana,et al.  Determination of tetragonal-cubic phase boundary of Zr1-XRXO2-X/2 (R = Nd, Sm, Y, Er and Yb) BY Raman scattering , 1996 .