Production of PLA/NR blends compatibilized with EE-g-GMA and POE-g-GMA: an investigation of mechanical, thermal, thermomechanical properties and morphology

[1]  F. Anuar,et al.  Blending of Low-Density Polyethylene and Poly(Butylene Succinate) (LDPE/PBS) with Polyethylene–Graft–Maleic Anhydride (PE–g–MA) as a Compatibilizer on the Phase Morphology, Mechanical and Thermal Properties , 2023, Polymers.

[2]  A. Boccaccini,et al.  The Mechanical, Thermal, and Chemical Properties of PLA-Mg Filaments Produced via a Colloidal Route for Fused-Filament Fabrication , 2022, Polymers.

[3]  E. Araújo,et al.  Use of crosslinking agent to produce high‐performance PLA/EVA blends via reactive processing , 2022, Journal of Vinyl and Additive Technology.

[4]  B. G. Soares,et al.  Tailoring Nylon 6/Acrylonitrile-Butadiene-Styrene Nanocomposites for Application against Electromagnetic Interference: Evaluation of the Mechanical, Thermal and Electrical Behavior, and the Electromagnetic Shielding Efficiency , 2022, International journal of molecular sciences.

[5]  E. Araújo,et al.  Performance of Poly(caprolactone) (PCL) as an Impact Modifier for Polystyrene (PS): Effect of Functionalized Compatibilizers with Maleic Anhydride and Glycidyl Methacrylate , 2022, Sustainability.

[6]  Q. Tarrés,et al.  Approaching a Zero-Waste Strategy in Rapeseed (Brassica napus) Exploitation: Sustainably Approaching Bio-Based Polyethylene Composites , 2022, Sustainability.

[7]  E. Araújo,et al.  Tuning the performance of PA6 / EPDM‐MA nanocomposites reinforced with Ni 0. 5 Zn 0 ., 2022, Polymer Composites.

[8]  S. Mohanty,et al.  Poly(lactic acid) (PLA)-based mulch films: evaluation of mechanical, thermal, barrier properties and aerobic biodegradation characteristics in real-time environment , 2022, Polymer Bulletin.

[9]  E. Medeiros,et al.  Electrical nanocomposites of PA6 / ABS / ABS‐MA reinforced with carbon nanotubes ( MWCNTf ) for antistatic packaging , 2022, Polymer Composites.

[10]  Chen Zhao,et al.  EPDM‐g‐MAH toughened bio‐based polyamide 56 to prepare thermoplastic polyamide elastomer and the performance characterization , 2022, Journal of Applied Polymer Science.

[11]  Autchara Pangon,et al.  A Comprehensive Evaluation of Mechanical, Thermal, and Antibacterial Properties of PLA/ZnO Nanoflower Biocomposite Filaments for 3D Printing Application , 2022, Polymers.

[12]  E. Araújo,et al.  Tailoring Poly(lactic acid) (PLA) Properties: Effect of the Impact Modifiers EE-g-GMA and POE-g-GMA , 2021, Polymers.

[13]  Zhe Qiang,et al.  In situ grafting approach for preparing PLA/PHBV degradable blends with improved mechanical properties , 2021, Polymer Bulletin.

[14]  E. Araújo,et al.  Production of Eco-Sustainable Materials: Compatibilizing Action in Poly (Lactic Acid)/High-Density Biopolyethylene Bioblends , 2021, Sustainability.

[15]  E. Araújo,et al.  Preparation of flexible and magnetic PA6 / SEBS‐MA nanocomposites reinforced with Ni‐Zn ferrite , 2021, Polymer Composites.

[16]  E. Araújo,et al.  Biopolyethylene/ Morinda citrifolia cellulosic biocomposites: The impact of chemical crosslinking and PE‐g‐MA compatibilizer , 2021, Polymer Composites.

[17]  E. Araújo,et al.  Evaluation of the SEBS copolymer in the compatibility of PP / ABS blends through mechanical, thermal, thermomechanical properties, and morphology , 2021, Polymers for Advanced Technologies.

[18]  E. Araújo,et al.  Additivation of the ethylene–vinyl acetate copolymer (EVA) with maleic anhydride (MA) and dicumyl peroxide (DCP): the impact of styrene monomer on cross-linking and functionalization , 2021, Polymer Bulletin.

[19]  E. Araújo,et al.  Reactive processing of PA6/EPDM‐MA blends as modifier for application and development of high‐performance polypropylene , 2021, Journal of Vinyl and Additive Technology.

[20]  E. Araújo,et al.  Annealing Effect on Pla/Eva Blends Performance , 2021, Journal of Polymers and the Environment.

[21]  E. Araújo,et al.  The Impact of the Macaíba Components Addition on the Biodegradation Acceleration of Poly (Ɛ-Caprolactone) (PCL) , 2021, Journal of Polymers and the Environment.

[22]  F. Baruzzi,et al.  Biopolymer hybrid materials: Development, characterization, and food packaging applications , 2021 .

[23]  E. Araújo,et al.  Feasibility of Manufacturing Disposable Cups using PLA/PCL Composites Reinforced with Wood Powder , 2021, Journal of Polymers and the Environment.

[24]  G. Astray,et al.  Synthesis of advanced biobased green materials from renewable biopolymers , 2021 .

[25]  R. Balart,et al.  Improvement of Impact Strength of Polylactide Blends with a Thermoplastic Elastomer Compatibilized with Biobased Maleinized Linseed Oil for Applications in Rigid Packaging , 2021, Molecules.

[26]  L. Zsidai,et al.  Influence of the 3D Printing Process Settings on Tensile Strength of PLA and HT-PLA , 2020 .

[27]  E. Araújo,et al.  Blends with technological potential of copolymer polypropylene with polypropylene from post-consumer industrial containers , 2019, Materials Research Express.

[28]  Pingan Song,et al.  Toward Fully Bio-based and Supertough PLA Blends via in Situ Formation of Cross-Linked Biopolyamide Continuity Network , 2019, Macromolecules.

[29]  P. Agrawal,et al.  Effect of natural and expanded vermiculite clays on the properties of eco-friendly biopolyethylene-vermiculite clay biocomposites , 2019, Composites Part B: Engineering.

[30]  V. Stathopoulos,et al.  Impact of processing parameters on tensile strength, in-process crystallinity and mesostructure in FDM-fabricated PLA specimens , 2019, Rapid Prototyping Journal.

[31]  Domagoj Vrsaljko,et al.  The influence of the dispersed phase on the morphology, mechanical and thermal properties of PLA/PE‐LD and PLA/PE‐HD polymer blends and their nanocomposites with TiO 2 and CaCO 3 , 2019, Polymer Engineering & Science.

[32]  P. Cinelli,et al.  Rubber Toughening of Polylactic Acid (PLA) with Poly(butylene adipate-co-terephthalate) (PBAT): Mechanical Properties, Fracture Mechanics and Analysis of Ductile-to-Brittle Behavior while Varying Temperature and Test Speed , 2019, European Polymer Journal.

[33]  Yancun Yu,et al.  Uniaxial stretching and properties of fully biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends. , 2019, International journal of biological macromolecules.

[34]  Soojin Park,et al.  Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review , 2019, Composites Part B: Engineering.

[35]  M. M. Ueki,et al.  Rheology, Mechanical Properties and Morphology of Poly(lactic acid)/Ethylene Vinyl Acetate Blends , 2019, Journal of Polymers and the Environment.

[36]  P. Carreau,et al.  Poly (lactic acid) blends: Processing, properties and applications. , 2019, International journal of biological macromolecules.

[37]  Amit Kumar,et al.  Morphology and crystalline characteristics of polylactic acid [PLA]/linear low density polyethylene [LLDPE]/microcrystalline cellulose [MCC] fiber composite , 2019, Composites Science and Technology.

[38]  E. Araújo,et al.  Blends of Polystyrene/Shoes Waste (SBRr): Influence of Mixture Sequence and Compatibilizer , 2019, Macromolecular Symposia.

[39]  A. Hudson,et al.  Is Plastic Pollution in Aquatic and Terrestrial Environments a Driver for the Transmission of Pathogens and the Evolution of Antibiotic Resistance? , 2019, Environmental science & technology.

[40]  Jianguo Mi,et al.  Multiple actions of poly(ethylene octene) grafted with glycidyl methacrylate on the performance of poly(lactic acid) , 2018, RSC advances.

[41]  R. Yassar,et al.  Development of nanocellulose-reinforced PLA nanocomposite by using maleated PLA (PLA-g-MA) , 2018 .

[42]  S. Amico,et al.  Compatibilization and mechanical properties of compression-molded polypropylene/high-impact polystyrene blends , 2018, Progress in Rubber, Plastics and Recycling Technology.

[43]  U. Suwanmanee,et al.  A trade-off between carbon and water impacts in bio-based box production chains in Thailand: A case study of PS, PLAS, PLAS/starch, and PBS , 2017 .

[44]  T. Baran,et al.  Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon , 2017, Journal of occupational and environmental hygiene.

[45]  T. Mungcharoen,et al.  Comparative assessment of global warming impact and eco-efficiency of PS (polystyrene), PET (polyethylene terephthalate) and PLA (polylactic acid) boxes , 2016 .

[46]  H. Khonakdar,et al.  In depth analysis of micro-mechanism of mechanical property alternations in PLA/EVA/clay nanocomposites: A combined theoretical and experimental approach , 2015 .

[47]  A. Arsad,et al.  Effects of Compatibilizer on Thermal and Mechanical Properties of PLA/NR Blends , 2015 .

[48]  Chuanhui Xu,et al.  Crosslinked bicontinuous biobased PLA/NR blends via dynamic vulcanization using different curing systems. , 2014, Carbohydrate polymers.

[49]  Gregory C. Rutledge,et al.  Handbook of polymer crystallization , 2013 .

[50]  P. Juntuek,et al.  Effect of glycidyl methacrylate‐grafted natural rubber on physical properties of polylactic acid and natural rubber blends , 2012 .

[51]  P. Cassagnau,et al.  Structure and properties of polylactide/natural rubber blends , 2011 .

[52]  Amanda Dantas de Oliveira,et al.  Efeito da Sequência de Mistura nas Propriedades de Blendas PA6/ABS Compatibilizadas com o Copolímero SMA , 2011 .

[53]  V. Bello,et al.  Transmission Electron Microscopy of Lipid Vesicles for Drug Delivery: Comparison between Positive and Negative Staining , 2010, Microscopy and Microanalysis.

[54]  Ramani Narayan,et al.  Assessment of the environmental profile of PLA, PET and PS clamshell containers using LCA methodology , 2009 .

[55]  W. Lu,et al.  Crystallization behavior of fully biodegradable poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends , 2009 .

[56]  M. Rabello,et al.  The kinetics of isothermal cold crystallization and tensile properties of poly(ethylene terephthalate) , 2005 .

[57]  Susan Selke,et al.  An overview of polylactides as packaging materials. , 2004, Macromolecular bioscience.

[58]  Peter Van Puyvelde,et al.  Rheology and morphology of compatibilized polymer blends , 2001 .

[59]  Maria Madalena de Camargo Forte,et al.  Aspectos Morfológicos e Relação Estrutura-Propriedades de Poliestireno de Alto Impacto , 2001 .

[60]  J. Seppälä,et al.  Compatibilization of polyethylene terephthalate/polypropylene blends with styrene–ethylene/butylene–styrene (SEBS) block copolymers , 1997 .

[61]  Sanghyo Kim,et al.  Compatibilization mechanism of polymer blends with an in-situ compatibilizer , 1997 .

[62]  H. Janeschitz-Kriegl,et al.  The Role of Long Molecules and Nucleating Agents in Shear Induced Crystallization of Isotactic Polypropylenes** , 1997 .

[63]  A. Ajji,et al.  Interphase and compatibilization of polymer blends , 1996 .

[64]  M. Vert,et al.  Present and Future of PLA Polymers , 1995 .

[65]  Chuh‐Yung Chen,et al.  Rubber toughened polyamide 6: The influences of compatibilizer on morphology and impact properties , 1993 .

[66]  M. Xanthos,et al.  Compatibilization of polymer blends by reactive processing , 1991 .

[67]  Takashi Inoue,et al.  Compatibilizer‐aided toughening in polymer blends consisting of brittle polymer particles dispersed in a ductile polymer matrix , 1988 .

[68]  E. Araújo,et al.  Annealing efficacy on PLA. Insights on mechanical, thermomechanical and crystallinity characters , 2021 .

[69]  N. Tomić,et al.  Compatibilization of polymer blends by the addition of graft copolymers , 2020 .

[70]  Tomy J. Gutiérrez Reactive and Functional Polymers Volume Four: Surface, Interface, Biodegradability, Compostability and Recycling , 2020 .

[71]  E. Delamarche,et al.  A Review to Guide Eco-Design of Reactive Polymer-Based Materials , 2020 .

[72]  Patrick B. Smith,et al.  Thermal analyses of poly(lactic acid) PLA and micro-ground paper blends , 2017, Journal of Thermal Analysis and Calorimetry.

[73]  O. Santawitee,et al.  The Effect of Rubber on Morphology, Thermal Properties and Mechanical Properties of PLA/NR and PLA/ENR Blends☆ , 2013 .

[74]  Robert Jérôme,et al.  Strategies for compatibilization of polymer blends , 1998 .