Joint embedding: A scalable alignment to compare individuals in a connectivity space

[1]  M. Mesulam,et al.  From sensation to cognition. , 1998, Brain : a journal of neurology.

[2]  G L Shulman,et al.  INAUGURAL ARTICLE by a Recently Elected Academy Member:A default mode of brain function , 2001 .

[3]  Daniel D. Lee,et al.  Learning High Dimensional Correspondences from Low Dimensional Manifolds , 2003 .

[4]  Thomas F. Nugent,et al.  Dynamic mapping of human cortical development during childhood through early adulthood. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Daniel D. Lee,et al.  Semisupervised alignment of manifolds , 2005, AISTATS.

[6]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[7]  S. Petersen,et al.  The maturing architecture of the brain's default network , 2008, Proceedings of the National Academy of Sciences.

[8]  M. Ehler Applied and Computational Harmonic Analysis , 2008 .

[9]  Jonathan D. Power,et al.  Functional Brain Networks Develop from a “Local to Distributed” Organization , 2009, PLoS Comput. Biol..

[10]  J. Duncan The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour , 2010, Trends in Cognitive Sciences.

[11]  Alan C. Evans,et al.  Growing Together and Growing Apart: Regional and Sex Differences in the Lifespan Developmental Trajectories of Functional Homotopy , 2010, The Journal of Neuroscience.

[12]  Polina Golland,et al.  Functional Geometry Alignment and Localization of Brain Areas , 2010, NIPS.

[13]  Jonathan D. Power,et al.  Prediction of Individual Brain Maturity Using fMRI , 2010, Science.

[14]  Polina Golland,et al.  Learning an Atlas of a Cognitive Process in Its Functional Geometry , 2011, IPMI.

[15]  Bryan R. Conroy,et al.  A Common, High-Dimensional Model of the Representational Space in Human Ventral Temporal Cortex , 2011, Neuron.

[16]  D. Hu,et al.  Decoding Lifespan Changes of the Human Brain Using Resting-State Functional Connectivity MRI , 2012, PloS one.

[17]  Margaret D. King,et al.  The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry , 2012, Front. Neurosci..

[18]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[19]  Jack L. Gallant,et al.  A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain , 2012, Neuron.

[20]  M. Fox,et al.  Individual Variability in Functional Connectivity Architecture of the Human Brain , 2013, Neuron.

[21]  Kaleem Siddiqi,et al.  Diffeomorphic Spectral Matching of Cortical Surfaces , 2013, IPMI.

[22]  Leo Grady,et al.  FOCUSR: Feature Oriented Correspondence Using Spectral Regularization--A Method for Precise Surface Matching , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Mary E. Meyerand,et al.  Characterizing Functional Connectivity Differences in Aging Adults using Machine Learning on Resting State fMRI Data , 2013, Front. Comput. Neurosci..

[24]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[25]  N. Kriegeskorte,et al.  Author ' s personal copy Representational geometry : integrating cognition , computation , and the brain , 2013 .

[26]  Daniel Rueckert,et al.  Groupwise Simultaneous Manifold Alignment for High-Resolution Dynamic MR Imaging of Respiratory Motion , 2013, IPMI.

[27]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[28]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[29]  Polina Golland,et al.  Decoupling function and anatomy in atlases of functional connectivity patterns: Language mapping in tumor patients , 2014, NeuroImage.

[30]  Joaquín Goñi,et al.  Changes in structural and functional connectivity among resting-state networks across the human lifespan , 2014, NeuroImage.

[31]  Satrajit S. Ghosh,et al.  Predicting Activation Across Individuals with Resting-State Functional Connectivity Based Multi-Atlas Label Fusion , 2015, MICCAI.

[32]  R. Buckner,et al.  Parcellating Cortical Functional Networks in Individuals , 2015, Nature Neuroscience.

[33]  Po-Hsuan Chen,et al.  A Reduced-Dimension fMRI Shared Response Model , 2015, NIPS.

[34]  Xi-Nian Zuo,et al.  A Connectome Computation System for discovery science of brain , 2015 .

[35]  D. Hu,et al.  Predicting individual brain maturity using dynamic functional connectivity , 2015, Front. Hum. Neurosci..

[36]  Michael W. Cole,et al.  Activity flow over resting-state networks shapes cognitive task activations , 2016, Nature Neuroscience.

[37]  Polina Golland,et al.  Identifying Shared Brain Networks in Individuals by Decoupling Functional and Anatomical Variability. , 2016, Cerebral cortex.

[38]  R. Adolphs,et al.  Building a Science of Individual Differences from fMRI , 2016, Trends in Cognitive Sciences.

[39]  J. S. Guntupalli,et al.  A Model of Representational Spaces in Human Cortex , 2016, Cerebral cortex.

[40]  Timothy Edward John Behrens,et al.  Task-free MRI predicts individual differences in brain activity during task performance , 2016, Science.

[41]  Elizabeth Jefferies,et al.  Situating the default-mode network along a principal gradient of macroscale cortical organization , 2016, Proceedings of the National Academy of Sciences.

[42]  Satrajit S. Ghosh,et al.  The Healthy Brain Network Serial Scanning Initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions , 2016, bioRxiv.

[43]  Julia M. Huntenburg,et al.  A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex , 2017, Cerebral cortex.

[44]  Kai Li,et al.  Computational approaches to fMRI analysis , 2017, Nature Neuroscience.

[45]  Carey E. Priebe,et al.  A central limit theorem for an omnibus embedding of multiple random graphs and implications for multiscale network inference , 2017 .

[46]  Satrajit S. Ghosh,et al.  Diffeomorphic functional brain surface alignment: Functional demons , 2017, NeuroImage.

[47]  Carey E. Priebe,et al.  A Central Limit Theorem for an Omnibus Embedding of Multiple Random Dot Product Graphs , 2017, 2017 IEEE International Conference on Data Mining Workshops (ICDMW).

[48]  Satrajit S. Ghosh,et al.  Functional gradients of the cerebellum , 2018, bioRxiv.

[49]  R. Passingham,et al.  Whole brain comparative anatomy using connectivity blueprints , 2018, bioRxiv.

[50]  Daniel Rueckert,et al.  Multimodal surface matching with higher-order smoothness constraints , 2017, NeuroImage.

[51]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[52]  Koen V. Haak,et al.  Connectopic mapping with resting-state fMRI , 2016, NeuroImage.

[53]  Reinder Vos de Wael,et al.  Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding , 2018, Proceedings of the National Academy of Sciences.

[54]  Yong Fan,et al.  Brain age prediction based on resting-state functional connectivity patterns using convolutional neural networks , 2018, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018).

[55]  Georg Langs,et al.  Performing group-level functional image analyses based on homologous functional regions mapped in individuals , 2019, PLoS biology.

[56]  Ahmad R. Hariri,et al.  General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks , 2018, NeuroImage.

[57]  Daniel S. Margulies,et al.  Macroscale cortical organization and a default-like apex transmodal network in the marmoset monkey , 2019, Nature Communications.

[58]  Daniel S. Margulies,et al.  BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets , 2019, Communications Biology.

[59]  Steven E Petersen,et al.  Evaluating the Prediction of Brain Maturity From Functional Connectivity After Motion Artifact Denoising. , 2019, Cerebral cortex.

[60]  Arno Klein,et al.  Brain age prediction: Cortical and subcortical shape covariation in the developing human brain , 2019, NeuroImage.

[61]  Carey E. Priebe,et al.  Eliminating accidental deviations to minimize generalization error: applications in connectomics and genomics , 2019, bioRxiv.

[62]  J. Vogelstein,et al.  Cross-species functional alignment reveals evolutionary hierarchy within the connectome , 2019, NeuroImage.

[63]  James H Cole,et al.  Multimodality neuroimaging brain-age in UK biobank: relationship to biomedical, lifestyle, and cognitive factors , 2019, Neurobiology of Aging.

[64]  Reinder Vos de Wael,et al.  Atypical functional connectome hierarchy in autism , 2018, Nature Communications.

[65]  Arno Klein,et al.  Brain age prediction: Cortical and subcortical shape covariation in the developing human brain , 2019, NeuroImage.

[66]  Alan C. Evans,et al.  Microstructural and functional gradients are increasingly dissociated in transmodal cortices , 2019, PLoS biology.

[67]  Carey E. Priebe,et al.  Joint Embedding of Graphs , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  Carey E. Priebe,et al.  Inference for Multiple Heterogeneous Networks with a Common Invariant Subspace , 2019, J. Mach. Learn. Res..