Enhancing task fMRI preprocessing via individualized model‐based filtering of intrinsic activity dynamics

Brain responses recorded during fMRI are thought to reflect both rapid, stimulus-evoked activity and the propagation of spontaneous activity through brain networks. In the current work we describe a method to improve the estimation of task-evoked brain activity by first “filtering-out” the intrinsic propagation of pre-event activity from the BOLD signal. We do so using Mesoscale Individualized NeuroDynamic (MINDy; [1]) models built from individualized resting-state data (MINDy-based Filtering). After filtering, time-series are analyzed using conventional techniques. Results demonstrate that this simple operation significantly improves the statistical power and temporal precision of estimated group-level effects. Moreover, use of MINDy-based filtering increased the similarity of neural activation profiles and prediction of individual differences in behavior across tasks measuring the same construct (cognitive control).Thus, by subtracting the propagation of previous activity, we obtain better estimates of task-related neural activity.

[1]  N. Wiener Resume of Fundamental Mathematical Notions , 1949 .

[2]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications , 1949 .

[3]  S. Sternberg High-Speed Scanning in Human Memory , 1966, Science.

[4]  H. Fields,et al.  Evidence that raphe-spinal neurons mediate opiate and midbrain stimulation-produced analgesias , 1978, Pain.

[5]  J. Fleiss,et al.  Intraclass correlations: uses in assessing rater reliability. , 1979, Psychological bulletin.

[6]  G. Logan On the ability to inhibit thought and action , 1984 .

[7]  J. Stroop Studies of interference in serial verbal reactions. , 1992 .

[8]  B. Biswal,et al.  Functional connectivity in the motor cortex of resting human brain using echo‐planar mri , 1995, Magnetic resonance in medicine.

[9]  E. DeYoe,et al.  Reduction of physiological fluctuations in fMRI using digital filters , 1996, Magnetic resonance in medicine.

[10]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[11]  P. Stratta,et al.  Schizophrenic deficits in the processing of context. , 1998, Archives of general psychiatry.

[12]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.

[13]  Lars Kai Hansen,et al.  Modeling the hemodynamic response in fMRI using smooth FIR filters , 2000, IEEE Transactions on Medical Imaging.

[14]  James L. McClelland,et al.  The time course of perceptual choice: the leaky, competing accumulator model. , 2001, Psychological review.

[15]  J. Ridley Studies of Interference in Serial Verbal Reactions , 2001 .

[16]  Herman Bruyninckx,et al.  Kalman filters for non-linear systems: a comparison of performance , 2004 .

[17]  M. Corbetta,et al.  Separating Processes within a Trial in Event-Related Functional MRI II. Analysis , 2001, NeuroImage.

[18]  M. Corbetta,et al.  Separating Processes within a Trial in Event-Related Functional MRI I. The Method , 2001, NeuroImage.

[19]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[20]  Randy L. Buckner,et al.  Mixed blocked/event-related designs separate transient and sustained activity in fMRI , 2003, NeuroImage.

[21]  Hans Knutsson,et al.  Detection and detrending in fMRI data analysis , 2004, NeuroImage.

[22]  Jonathan D. Cohen,et al.  Prefrontal cortex and flexible cognitive control: rules without symbols. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Jeffrey M. Zacks,et al.  Coherent spontaneous activity accounts for trial-to-trial variability in human evoked brain responses , 2006, Nature Neuroscience.

[24]  Abraham Z. Snyder,et al.  A method for using blocked and event-related fMRI data to study “resting state” functional connectivity , 2007, NeuroImage.

[25]  Justin L. Vincent,et al.  Intrinsic Fluctuations within Cortical Systems Account for Intertrial Variability in Human Behavior , 2007, Neuron.

[26]  Karl J. Friston,et al.  Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri Nonlinear Dynamic Causal Models for Fmri , 2022 .

[27]  G. Logan,et al.  Models of response inhibition in the stop-signal and stop-change paradigms , 2009, Neuroscience & Biobehavioral Reviews.

[28]  Bharat B. Biswal,et al.  Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity , 2010, NeuroImage.

[29]  Marisa O. Hollinshead,et al.  The organization of the human cerebral cortex estimated by intrinsic functional connectivity. , 2011, Journal of neurophysiology.

[30]  Eric L. Denovellis,et al.  Synchronous Oscillatory Neural Ensembles for Rules in the Prefrontal Cortex , 2012, Neuron.

[31]  Aki Vehtari,et al.  Dynamic retrospective filtering of physiological noise in BOLD fMRI: DRIFTER , 2012, NeuroImage.

[32]  Abraham Z. Snyder,et al.  Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion , 2012, NeuroImage.

[33]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[34]  Steven E. Petersen,et al.  The mixed block/event-related design , 2012, NeuroImage.

[35]  Marvin M Chun,et al.  Category-selective background connectivity in ventral visual cortex. , 2012, Cerebral cortex.

[36]  Simon B. Eickhoff,et al.  An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data , 2013, NeuroImage.

[37]  Biyu J. He,et al.  Average Is Optimal: An Inverted-U Relationship between Trial-to-Trial Brain Activity and Behavioral Performance , 2013, PLoS Comput. Biol..

[38]  M. Schwartz,et al.  The retina as a window to the brain—from eye research to CNS disorders , 2013, Nature Reviews Neurology.

[39]  Gary F. Egan,et al.  Filtering induces correlation in fMRI resting state data , 2013, NeuroImage.

[40]  Biyu J. He Spontaneous and Task-Evoked Brain Activity Negatively Interact , 2013, The Journal of Neuroscience.

[41]  Jonathan D. Power,et al.  Intrinsic and Task-Evoked Network Architectures of the Human Brain , 2014, Neuron.

[42]  James L. McClelland,et al.  Parallel Distributed Processing at 25: Further Explorations in the Microstructure of Cognition , 2014, Cogn. Sci..

[43]  Dimitri M. Kullmann,et al.  Oscillatory multiplexing of population codes for selective communication in the mammalian brain , 2014, Nature Reviews Neuroscience.

[44]  Euan A Ashley,et al.  The precision medicine initiative: a new national effort. , 2015, JAMA.

[45]  Gustavo Deco,et al.  Task-Driven Activity Reduces the Cortical Activity Space of the Brain: Experiment and Whole-Brain Modeling , 2015, PLoS Comput. Biol..

[46]  Michael W. Cole,et al.  Activity flow over resting-state networks shapes cognitive task activations , 2016, Nature Neuroscience.

[47]  Todd S Braver,et al.  Proactive control of irrelevant task rules during cued task switching , 2016, Psychological research.

[48]  Timothy Edward John Behrens,et al.  Task-free MRI predicts individual differences in brain activity during task performance , 2016, Science.

[49]  Evan M. Gordon,et al.  Precision Functional Mapping of Individual Human Brains , 2017, Neuron.

[50]  Karl J. Friston,et al.  Large-scale DCMs for resting-state fMRI , 2017, Network Neuroscience.

[51]  Joachim M. Buhmann,et al.  Regression DCM for fMRI , 2017, NeuroImage.

[52]  Danielle S. Bassett,et al.  Personalized Neuroscience: Common and Individual-Specific Features in Functional Brain Networks , 2018, Neuron.

[53]  Satrajit S. Ghosh,et al.  FMRIPrep: a robust preprocessing pipeline for functional MRI , 2018, bioRxiv.

[54]  Bruce M Psaty,et al.  Comparison of 2 Treatment Models: Precision Medicine and Preventive Medicine. , 2018, JAMA.

[55]  Evan M. Gordon,et al.  Local-Global Parcellation of the Human Cerebral Cortex From Intrinsic Functional Connectivity MRI , 2017, bioRxiv.

[56]  Michael W. Cole,et al.  Task activations produce spurious but systematic inflation of task functional connectivity estimates , 2018, NeuroImage.

[57]  G. Deco,et al.  Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain , 2019, Science Advances.

[58]  D. V. Essen,et al.  Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics , 2018, Neuron.

[59]  Philip D. Plowright Extrapolation , 2019, Making Architecture Through Being Human.

[60]  Satrajit S. Ghosh,et al.  Analysis of task-based functional MRI data preprocessed with fMRIPrep , 2019, Nature Protocols.

[61]  Adeel Razi,et al.  Dynamic causal modelling revisited , 2017, NeuroImage.

[62]  Charles B. Mikell,et al.  Widespread temporal coding of cognitive control in human prefrontal cortex , 2019, Nature Neuroscience.

[63]  Todd S. Braver,et al.  The Dual Mechanisms of Cognitive Control (DMCC) Project , 2020, bioRxiv.

[64]  Michael J. Cole,et al.  Estimation and validation of individualized dynamic brain models with resting state fMRI , 2019, NeuroImage.

[65]  Michael W. Cole,et al.  The Functional Relevance of Task-State Functional Connectivity , 2020, The Journal of Neuroscience.

[66]  Estimation and validation of individualized dynamic brain models with resting state fMRI , 2020, NeuroImage.

[67]  Satrajit S. Ghosh,et al.  Analysis of task-based functional MRI data preprocessed with fMRIPrep , 2020, Nature Protocols.

[68]  Matthew F. Singh,et al.  Scalable surrogate deconvolution for identification of partially-observable systems and brain modeling , 2020, bioRxiv.

[69]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[70]  P. Alam ‘K’ , 2021, Composites Engineering.

[71]  P. Alam,et al.  H , 1887, High Explosives, Propellants, Pyrotechnics.

[72]  Matthew F. Singh,et al.  Efficient state and parameter estimation for high-dimensional nonlinear system identification with application to MEG brain network modeling , 2021, ArXiv.

[73]  Matthew F. Singh,et al.  The Dual Mechanisms of Cognitive Control dataset, a theoretically-guided within-subject task fMRI battery , 2021, Scientific Data.

[74]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[75]  Matthew F. Singh,et al.  The Dual Mechanisms of Cognitive Control dataset, a theoretically-guided within-subject task fMRI battery , 2022, Scientific data.

[76]  M. Manosevitz,et al.  High-Speed Scanning in Human Memory , 2022 .