Perceptual maps: the good, the bad and the ugly

textabstractPerceptual maps are often used in marketing to visually study relations between two or more attributes. However, in many perceptual maps published in the recent literature it remains unclear what is being shown and how the relations between the points in the map can be interpreted or even what a point represents. The term perceptual map refers to plots obtained by a series of different techniques, such as principal component analysis, (multiple) correspondence analysis, and multidimensional scaling, each needing specific requirements for producing the map and interpreting it. Some of the major flaws of published perceptual maps are omission of reference to the techniques that produced the map, non-unit shape parameters for the map, and unclear labelling of the points. The aim of this paper is to provide clear guidelines for producing these maps so that they are indeed useful and simple aids for the reader. To facilitate this, we suggest a small set of simple icons that indicate the rules for correctly interpreting the map. We present several examples, point out flaws and show how to produce better maps.

[1]  Joseph L. Zinnes,et al.  A Probabilistic Model for the Multidimensional Scaling of Proximity and Preference Data , 1986 .

[2]  J. Gower Visualisation in multivariate and multidimensional data analysis , 2003 .

[3]  Y. Wind,et al.  Product policy : concepts, methods, and strategy , 2010 .

[4]  Marijke Taks,et al.  Youth Sports Participation Styles and Market Segmentation Profiles: Evidence and Applications , 2006 .

[5]  Wayne S. DeSarbo,et al.  A Clusterwise Bilinear Multidimensional Scaling Methodology for Simultaneous Segmentation and Positioning Analyses , 2008 .

[6]  Edgar A. Pessemier,et al.  The Dimensions of New Product Planning , 1973 .

[7]  Robert McGill,et al.  Graphical Perception: The Visual Decoding of Quantitative Information on Graphical Displays of Data , 1987 .

[8]  W. DeSarbo,et al.  A Parametric Multidimensional Unfolding Procedure for Incomplete Nonmetric Preference/Choice Set Data in Marketing Research , 1997 .

[9]  W. DeSarbo,et al.  The Spatial Representation of Market Information , 2001 .

[10]  Edward Rolf Tufte,et al.  The visual display of quantitative information , 1985 .

[11]  N. Lee,et al.  Within‐country ethnic differences and product positioning: a comparison of the perceptions of two British sub‐cultures , 2007 .

[12]  Paul E. Green,et al.  Multidimensional scaling and related techniques in marketing analysis , 1971 .

[13]  Patrick Hartmann,et al.  Green branding effects on attitude: functional versus emotional positioning strategies , 2005 .

[14]  Ajay K. Manrai,et al.  Optimal positioning of new product-concepts: some analytical implications and empirical results , 1992 .

[15]  W. DeSarbo,et al.  A latent structure factor analytic approach for customer satisfaction measurement , 2006 .

[16]  Ajay K. Manrai,et al.  A New Multidimensional Scaling Methodology for the Analysis of Asymmetric Proximity Data in Marketing Research , 1992 .

[17]  M. Greenacre Correspondence analysis of multivariate categorical data by weighted least-squares , 1988 .

[18]  Donna L. Hoffman,et al.  Constructing MDS Joint Spaces from Binary Choice Data: A Multidimensional Unfolding Threshold Model for Marketing Research , 1987 .

[19]  Paul E. Green,et al.  Multidimensional Scaling: An Introduction and Comparison of Nonmetric Unfolding Techniques , 1969 .

[20]  Pradeep K. Chintagunta,et al.  Inertia and Variety Seeking in a Model of Brand-Purchase Timing , 1998 .

[21]  Wayne S. DeSarbo,et al.  An Integrated Approach toward the Spatial Modeling of Perceived Customer Value , 1998 .

[22]  Allan D. Shocker,et al.  Customer-Oriented Approaches to Identifying Product-Markets , 1979 .

[23]  Hotaka Katahira,et al.  Perceptual Mapping Using Ordered Logit Analysis , 1990 .

[24]  Kristian Skrede Gleditsch,et al.  Graphic Discovery: A Trout in the Milk and Other Visual Adventures , 2006 .

[25]  Ajay K. Manrai,et al.  Elimination-By-Cutoffs , 1989 .

[26]  Donald R. Lehmann,et al.  Judged Similarity and Brand-Switching Data as Similarity Measures , 1972 .

[27]  Paul E. Green,et al.  Numerical Taxonomy in Marketing Analysis: A Review Article , 1968 .

[28]  William R. Dillon,et al.  A Segment-Level Model of Category Volume and Brand Choice , 1996 .

[29]  Jack K. H. Lee,et al.  A Multiple Ideal Point Model: Capturing Multiple Preference Effects from within an Ideal Point Framework , 2001 .

[30]  Joel Huber The Value of Sticky Articles , 2008 .

[31]  Allan D. Shocker,et al.  A Consumer-Based Methodology for the Identification of New Product Ideas , 1974 .

[32]  Michael K. Rich Marketing Engineering: : Computer‐Assisted Marketing Analysis and Planning , 1998 .

[33]  Alfred Taudes,et al.  Practice Prize Report - Planning New Tariffs at tele.ring: The Application and Impact of an Integrated Segmentation, Targeting, and Positioning Tool , 2008, Marketing science (Providence, R.I.).

[34]  Wayne S. DeSarbo,et al.  A Constrained Unfolding Methodology for Product Positioning , 1986 .

[35]  M. Velden,et al.  Perceptual mapping of multiple variable batteries by plotting supplementary variables in correspondence analysis of rating data , 2005 .

[36]  M. Greenacre Correspondence Analysis in Practice, Second Edition , 2007 .

[37]  Wayne S. Desarbo,et al.  The Joint Spatial Representation of Multiple Variable Batteries Collected in Marketing Research , 2001 .

[38]  David P. Tegarden,et al.  Business Information Visualization , 1999, Commun. Assoc. Inf. Syst..

[39]  Daniel L. Sherrell,et al.  Communications of the Association for Information Systems , 1999 .

[40]  Sirkka L. Jarvenpaa,et al.  The effect of task demands and graphical format on information processing strategies , 1989 .

[41]  Tammo H. A. Bijmolt,et al.  Assessing brand image through communalities and asymmetries in brand-to-attribute and attribute-to-brand associations , 2009, Eur. J. Oper. Res..