Particle swarm optimization with preference order ranking for multi-objective optimization

A new optimality criterion based on preference order (PO) scheme is used to identify the best compromise in multi-objective particle swarm optimization (MOPSO). This scheme is more efficient than Pareto ranking scheme, especially when the number of objectives is very large. Meanwhile, a novel updating formula for the particle's velocity is introduced to improve the search ability of the algorithm. The proposed algorithm has been compared with NSGA-II and other two MOPSO algorithms. The experimental results indicate that the proposed approach is effective on the highly complex multi-objective optimization problems.

[1]  Gregorio Toscano Pulido On the use of self-adaptation and elitism for multiobjetive particle swarm optimization , 2005 .

[2]  Tapabrata Ray,et al.  A Swarm Metaphor for Multiobjective Design Optimization , 2002 .

[3]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[4]  Jason R. Schott Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization. , 1995 .

[5]  Marco Laumanns,et al.  Scalable multi-objective optimization test problems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[6]  Xiaodong Li,et al.  A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization , 2003, GECCO.

[7]  Shiyou Yang,et al.  A particle swarm optimization-based method for multiobjective design optimizations , 2005, IEEE Transactions on Magnetics.

[8]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[9]  Kim-Fung Man,et al.  A real-coding jumping gene genetic algorithm (RJGGA) for multiobjective optimization , 2007, Inf. Sci..

[10]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[11]  Sanghamitra Bandyopadhyay,et al.  Multi-Objective Particle Swarm Optimization with time variant inertia and acceleration coefficients , 2007, Inf. Sci..

[12]  Marco Farina,et al.  A fuzzy definition of "optimality" for many-criteria optimization problems , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[13]  Jonathan E. Fieldsend,et al.  A Multi-Objective Algorithm based upon Particle Swarm Optimisation, an Efficient Data Structure and , 2002 .

[14]  Richard J. Duro,et al.  Information Processing With Evolutionary Algorithms: From Industrial Applications To Academic Speculations (Advanced Information and Knowledge Processing) , 2005 .

[15]  Soon-Thiam Khu,et al.  An Investigation on Preference Order Ranking Scheme for Multiobjective Evolutionary Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[16]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[17]  Kalyanmoy Deb,et al.  Running performance metrics for evolutionary multi-objective optimizations , 2002 .

[18]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[19]  Xin Yao,et al.  Performance Scaling of Multi-objective Evolutionary Algorithms , 2003, EMO.

[20]  Indraneel Das A preference ordering among various Pareto optimal alternatives , 1999 .

[21]  Carlos A. Coello Coello,et al.  Handling multiple objectives with particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[22]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[23]  Kay Chen Tan,et al.  A Multiobjective Memetic Algorithm Based on Particle Swarm Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[25]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[26]  Jonathan E. Fieldsend,et al.  A MOPSO Algorithm Based Exclusively on Pareto Dominance Concepts , 2005, EMO.

[27]  Xavier Blasco Ferragud,et al.  Integrated multiobjective optimization and a priori preferences using genetic algorithms , 2008, Inf. Sci..

[28]  Prospero C. Naval,et al.  An effective use of crowding distance in multiobjective particle swarm optimization , 2005, GECCO '05.

[29]  Reza Tavakkoli-Moghaddam,et al.  A hybrid multi-objective immune algorithm for a flow shop scheduling problem with bi-objectives: Weighted mean completion time and weighted mean tardiness , 2007, Inf. Sci..

[30]  Carlos A. Coello Coello,et al.  Current and Future Research Trends in Evolutionary Multiobjective Optimization , 2005 .

[31]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[32]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.