Methodology of energy yield modelling of perovskite-based multi-junction photovoltaics

Energy yield (EY) modelling is an indispensable tool to minimize payback time of emerging perovskite-based multi-junction photovoltaics (PV) but it relies on many assumptions about device architecture and environmental conditions. Here, we propose a comprehensive framework that enables rapid simulation of complex architectures of perovskite-based multijunction PV and detailed calculation of their power output under realistic irradiation conditions in various climatic zones. Applying the framework to perovskite/silicon multi-junction solar modules, we showcase the impact of tracking on energy losses arising from spectral variations. Moreover, we demonstrate the strong dependency of the EY of bifacial multi-junction solar modules on the albedo. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

[1]  E. Shettle,et al.  Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties , 1979 .

[2]  R. G. Ross,et al.  Flat-plate photovoltaic array design optimization , 1980 .

[3]  Fuentes A simplified thermal model for Flat-Plate photovoltaic arrays , 1987 .

[4]  S. Kurtz,et al.  The influence of spectral solar irradiance variations on the performance of selected single-junction and multijunction solar cells , 1991 .

[5]  Y. Hirata,et al.  Output variation of photovoltaic modules with environmental factors—I. The effect of spectral solar radiation on photovoltaic module output , 1995 .

[6]  Richard F. Davis,et al.  The spectral effects of clouds on solar irradiance , 1998 .

[7]  C. Gueymard Parameterized transmittance model for direct beam and circumsolar spectral irradiance , 2001 .

[8]  A. García,et al.  Selecting a suitable model for characterizing photovoltaic devices , 2002 .

[9]  K. Araki,et al.  Influences of spectrum change to 3-junction concentrator cells , 2003 .

[10]  M. Brandon A global perspective , 2003 .

[11]  I. Reda,et al.  Solar position algorithm for solar radiation applications , 2004 .

[12]  A. Kapoor,et al.  Exact analytical solutions of the parameters of real solar cells using Lambert W-function , 2004 .

[13]  P. Würfel,et al.  Improved spectral robustness of triple tandem solar cells by combined series/parallel interconnection , 2004 .

[14]  Suani Teixeira Coelho,et al.  Renewable Energy Technologies to Improve Energy Access in Brazil , 2005 .

[15]  M. J. Kearney,et al.  The effect of spectral variations on the performance parameters of single and double junction amorphous silicon solar cells , 2005 .

[16]  S. Wilcox,et al.  Users Manual for TMY3 Data Sets (Revised) , 2008 .

[17]  Karen Abrinia,et al.  A review of principle and sun-tracking methods for maximizing solar systems output , 2009 .

[18]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[19]  K. Edmondson,et al.  Spectral response and energy output of concentrator multijunction solar cells , 2009 .

[20]  G. Peharz,et al.  Energy harvesting efficiency of III-V triple-junction concentrator solar cells under realistic spectral conditions , 2010 .

[21]  K. McIntosh,et al.  Reflection of normally incident light from silicon solar cells with pyramidal texture , 2011 .

[22]  A. Barnett,et al.  The Effect of Spectrum Variation on the Energy Production of Triple-Junction Solar Cells , 2012, IEEE Journal of Photovoltaics.

[23]  K. Araki,et al.  Validation of energy prediction method for a concentrator photovoltaic module in Toyohashi Japan , 2013 .

[24]  Nor Zaihar Yahaya,et al.  Single-diode model and two-diode model of PV modules: A comparison , 2013, 2013 IEEE International Conference on Control System, Computing and Engineering.

[25]  J. A. Ruiz-Arias,et al.  Analysis of the spectral variations on the performance of high concentrator photovoltaic modules operating under different real climate conditions , 2014 .

[26]  Carl R. Osterwald,et al.  Photovoltaic module calibration value versus optical air mass: the air mass function , 2014 .

[27]  F. Chenlo,et al.  Analysis of spectral effects on the energy yield of different PV (photovoltaic) technologies: The case of four specific sites , 2014 .

[28]  M. Green,et al.  Physics of the temperature coefficients of solar cells , 2015 .

[29]  Zhe Liu,et al.  The realistic energy yield potential of GaAs-on-Si tandem solar cells: a theoretical case study. , 2015, Optics express.

[30]  F. Almonacid,et al.  Effects of spectral coupling on perovskite solar cells under diverse climatic conditions , 2015 .

[31]  G. Kinsey Spectrum Sensitivity, Energy Yield, and Revenue Prediction of PV Modules , 2015, IEEE Journal of Photovoltaics.

[32]  Daniel K. Zhou,et al.  Development of a fast and accurate PCRTM radiative transfer model in the solar spectral region. , 2016, Applied optics.

[33]  Steven J. Byrnes,et al.  Multilayer optical calculations , 2016, 1603.02720.

[34]  Moritz H. Futscher,et al.  Efficiency Limit of Perovskite/Si Tandem Solar Cells , 2016 .

[35]  Saad Mekhilef,et al.  Solar cell parameters extraction based on single and double-diode models: A review , 2016 .

[36]  T. Buonassisi,et al.  On the methodology of energy yield assessment for one-Sun tandem solar cells , 2016 .

[37]  C. Kost,et al.  LEVELIZED COST OF ELECTRICITY RENEWABLE ENERGY TECHNOLOGIES , 2016 .

[38]  E. Garnett,et al.  Nanoscale Back Contact Perovskite Solar Cell Design for Improved Tandem Efficiency , 2017, Nano letters.

[39]  Zhe Liu,et al.  Predicting the outdoor performance of flat-plate III–V/Si tandem solar cells , 2017 .

[40]  Moritz H. Futscher,et al.  Modeling the Performance Limitations and Prospects of Perovskite/Si Tandem Solar Cells under Realistic Operating Conditions , 2017, ACS energy letters.

[41]  Henry J. Snaith,et al.  Predicting and optimising the energy yield of perovskite-on-silicon tandem solar cells under real world conditions , 2017 .

[42]  K. Yoshikawa,et al.  Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology , 2017 .

[43]  Maximilian T. Hörantner,et al.  The Potential of Multijunction Perovskite Solar Cells , 2017 .

[44]  C. Ballif,et al.  Field Performance versus Standard Test Condition Efficiency of Tandem Solar Cells and the Singular Case of Perovskites/Silicon Devices. , 2018, The journal of physical chemistry letters.

[45]  H. Aumann,et al.  Evaluation of Radiative Transfer Models With Clouds , 2018, Journal of Geophysical Research: Atmospheres.

[46]  Ricardo S. Bittencourt,et al.  Experimental design for remote laser evaporative molecular absorption spectroscopy sensor system concept , 2018, Optical Engineering + Applications.

[47]  B. Richards,et al.  Energy yield of all thin‐film perovskite/CIGS tandem solar modules , 2018, Progress in Photovoltaics: Research and Applications.

[48]  Chris Deline,et al.  Optimization and performance of bifacial solar modules: A global perspective , 2018 .

[49]  D. Friedman,et al.  Energy Yield Analysis of Multiterminal Si-Based Tandem Solar Cells , 2018, IEEE Journal of Photovoltaics.

[50]  B. Rech,et al.  Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield , 2018 .

[51]  B. Richards,et al.  Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces , 2018 .

[52]  Veikko Schepel,et al.  Advanced modelling of E/UIPV systems from location to load , 2018, 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC).

[53]  Kikuo Makita,et al.  Analysis of luminescence coupling effect in three-terminal tandem solar cells , 2018, Journal of Photonics for Energy.

[54]  Miro Zeman,et al.  A simplified skyline-based method for estimating the annual solar energy potential in urban environments , 2019, Nature Energy.