Ionic Conductivity of Organic–Inorganic Perovskites: Relevance for Long-Time and Low Frequency Behavior

[1]  Bo Chen,et al.  Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[2]  Feng Liu,et al.  Kinetics of Ion Transport in Perovskite Active Layers and Its Implications for Active Layer Stability. , 2015, Journal of the American Chemical Society.

[3]  Konrad Wojciechowski,et al.  Mapping Electric Field‐Induced Switchable Poling and Structural Degradation in Hybrid Lead Halide Perovskite Thin Films , 2015 .

[4]  Martijn Kemerink,et al.  Modeling Anomalous Hysteresis in Perovskite Solar Cells. , 2015, The journal of physical chemistry letters.

[5]  Keitaro Sodeyama,et al.  First-Principles Study of Ion Diffusion in Perovskite Solar Cell Sensitizers. , 2015, Journal of the American Chemical Society.

[6]  Yongbo Yuan,et al.  Photovoltaic Switching Mechanism in Lateral Structure Hybrid Perovskite Solar Cells , 2015 .

[7]  J. Bisquert,et al.  Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation , 2015 .

[8]  Michael Grätzel,et al.  The Significance of Ion Conduction in a Hybrid Organic-Inorganic Lead-Iodide-Based Perovskite Photosensitizer. , 2015, Angewandte Chemie.

[9]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[10]  Oleksandr Voznyy,et al.  Perovskite–fullerene hybrid materials suppress hysteresis in planar diodes , 2015, Nature Communications.

[11]  Wei Zhang,et al.  Charge selective contacts, mobile ions and anomalous hysteresis in organic-inorganic perovskite solar cells , 2015 .

[12]  Fujun Zhang,et al.  Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic–inorganic halide perovskites , 2015 .

[13]  Qingfeng Dong,et al.  Giant switchable photovoltaic effect in organometal trihalide perovskite devices. , 2015, Nature materials.

[14]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[15]  Qi Chen,et al.  The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. , 2015, Physical chemistry chemical physics : PCCP.

[16]  Aron Walsh,et al.  Self-Regulation Mechanism for Charged Point Defects in Hybrid Halide Perovskites** , 2015, Angewandte Chemie.

[17]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[18]  Yang Yang,et al.  Moisture assisted perovskite film growth for high performance solar cells , 2014 .

[19]  Eric T. Hoke,et al.  Hysteresis and transient behavior in current–voltage measurements of hybrid-perovskite absorber solar cells , 2014 .

[20]  Andrew R. Kitahara,et al.  Defect density and dielectric constant in perovskite solar cells , 2014 .

[21]  Oleksandr Voznyy,et al.  Materials processing routes to trap-free halide perovskites. , 2014, Nano letters.

[22]  H. Zeng,et al.  Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. , 2014, Journal of the American Chemical Society.

[23]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[24]  Qingfeng Dong,et al.  Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers , 2014 .

[25]  Juan Bisquert,et al.  Photoinduced Giant Dielectric Constant in Lead Halide Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[26]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[27]  Mao-Hua Du,et al.  Efficient carrier transport in halide perovskites: theoretical perspectives , 2014 .

[28]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[29]  Sung-Hoon Lee,et al.  The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. , 2014, The journal of physical chemistry letters.

[30]  Peng Gao,et al.  Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. , 2014, Angewandte Chemie.

[31]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[32]  Yanfa Yan,et al.  Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber , 2014 .

[33]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[34]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[35]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[36]  Aron Walsh,et al.  Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles , 2013, 1309.4215.

[37]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[38]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[39]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[40]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[41]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[42]  Ruhul Amin,et al.  Defect Chemistry of LiFePO4 , 2008 .

[43]  J. Maier Solid State Electrochemistry II: Devices and Techniques , 2007 .

[44]  Joachim Maier,et al.  Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications , 2001 .

[45]  David B. Mitzi,et al.  Templating and structural engineering in organic–inorganic perovskites , 2001 .

[46]  Joachim Maier,et al.  A powerful electrical network model for the impedance of mixed conductors , 1999 .

[47]  Yoshihiro Furukawa,et al.  Phase Transition and Electric Conductivity of ASnCl3 (A = Cs and CH3NH3). , 1998 .

[48]  Yoshihiro Furukawa,et al.  Chloride ion conductor CH3NH3GeCl3 studied by Rietveld analysis of X-ray diffraction and 35Cl NMR , 1995 .

[49]  J. Maier Electrochemical Investigation Methods of Ionic Transport Properties in Solids , 1994 .

[50]  T. Okuda,et al.  Successive Phase Transitions and High Ionic Conductivity of Trichlorogermanate (II) Salts as Studied by 35C1 NQR and Powder X-Ray Diffraction , 1994 .

[51]  J. Maier Mass Transport in the Presence of Internal Defect Reactions—Concept of Conservative Ensembles: I, Chemical Diffusion in Pure Compounds , 1993 .

[52]  Hiroshi Suga,et al.  Dielectric study of CH3NH3PbX3 (X = Cl, Br, I) , 1992 .

[53]  M. White,et al.  Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation , 1990 .

[54]  T. Matsui,et al.  127I-NQR, 119 Sn Mössbauer Effect, and Electrical Conductivity of MSnI3 (M = K, NH4 , Rb, Cs, and CH3NH3 ) , 1990 .

[55]  Albrecht Poglitsch,et al.  Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy , 1987 .

[56]  O. Knop,et al.  Cation rotation in methylammonium lead halides , 1985 .

[57]  J. Maier Evaluation of Electrochemical Methods in Solid State Research and Their Generalization for Defects with Variable Charges , 1984 .

[58]  Kazuo Fueki,et al.  Ionic conduction of the perovskite-type halides , 1983 .

[59]  H. Hoshino,et al.  Ionic conductivity of lead bromide crystals , 1973 .

[60]  H. Hoshino,et al.  Ionic Conductivity of Lead Chloride Crystals , 1969 .

[61]  I. Yokota On the Theory of Mixed Conduction with Special Reference to Conduction in Silver Sulfide Group Semiconductors , 1961 .

[62]  I. Yokota On the Electrical Conductivity of Cuprous Sulfide: A Diffusion Theory , 1953 .

[63]  M. H. Hebb Electrical Conductivity of Silver Sulfide , 1952 .