Dynamic atomic force microscopy methods

Abstract In this report we review the fundamentals, applications and future tendencies of dynamic atomic force microscopy (AFM) methods. Our focus is on understanding why the changes observed in the dynamic properties of a vibrating tip that interacts with a surface make possible to obtain molecular resolution images of membrane proteins in aqueous solutions or to resolve atomic-scale surface defects in ultra high vacuum (UHV). Our description of the two major dynamic AFM modes, amplitude modulation atomic force microscopy (AM-AFM) and frequency modulation atomic force microscopy (FM-AFM) emphasises their common points without ignoring the differences in experimental set-ups and operating conditions. Those differences are introduced by the different feedback parameters, oscillation amplitude in AM-AFM and frequency shift and excitation amplitude in FM-AFM, used to track the topography and composition of a surface. The theoretical analysis of AM-AFM (also known as tapping-mode) emphasises the coexistence, in many situations of interests, of two stable oscillation states, a low and high amplitude solution. The coexistence of those oscillation states is a consequence of the presence of attractive and repulsive components in the interaction force and their non-linear dependence on the tip–surface separation. We show that key relevant experimental properties such as the lateral resolution, image contrast and sample deformation are highly dependent on the oscillation state chosen to operate the instrument. AM-AFM allows to obtain simultaneous topographic and compositional contrast in heterogeneous samples by recording the phase angle difference between the external excitation and the tip motion (phase imaging). Significant applications of AM-AFM such as high-resolution imaging of biomolecules and polymers, large-scale patterning of silicon surfaces, manipulation of single nanoparticles or the fabrication of single electron devices are also reviewed. FM-AFM (also called non-contact AFM—NC-AFM) has achieved the long-standing goal of true atomic resolution with AFM in UHV. Our analysis starts with a discussion of the relation between frequency shifts and tip–surface interactions, emphasising the ability of perturbation theory to describe the measured frequency shift. We discuss the role of short-range chemical interactions in the atomic contrast, with particular attention to semiconductor and ionic (alkali halides and oxides) surfaces. Also included is a detailed quantitative comparison between theoretical simulations and experiment. Inversion procedures, the determination of the tip–sample interaction from the frequency shift versus distance curves above specific sites, are also reviewed. We finish with a discussion of the optimal range of experimental operation parameters, and the use of damping (excitation amplitude) as a source of atomic contrast, including the possible interpretation in terms of microscopic dissipation mechanisms.

[1]  Ernst Meyer,et al.  Separation of interactions by noncontact force microscopy , 2000 .

[2]  Y. Sugawara,et al.  Atomic-scale structures on a non-stoichiometric TiO2(110) surface studied by noncontact AFM , 2000 .

[3]  H. Güntherodt,et al.  Quantitative Measurement of Short-Range Chemical Bonding Forces , 2001, Science.

[4]  A. M. Baró,et al.  Observation of liquid neck formation with scanning force microscopy techniques , 1998 .

[5]  M. Reichling,et al.  Scanning Force Imaging of Atomic Size Defects on the CaF 2 \(111\) Surface , 1999 .

[6]  B. V. Derjaguin,et al.  Effect of contact deformations on the adhesion of particles , 1975 .

[7]  Y. Sugawara,et al.  The atomic resolution imaging of metallic Ag(111) surface by noncontact atomic force microscope , 1999 .

[8]  W. Unertl,et al.  Implications of contact mechanics models for mechanical properties measurements using scanning force microscopy , 1999 .

[9]  Y. Sugawara,et al.  Noncontact AFM imaging on Al-adsorbed Si(111) surface with an empty orbital , 2000 .

[10]  M. Tsukada,et al.  New Method for Noncontact Atomic Force Microscopy Image Simulations , 1999 .

[11]  R. Boisgard,et al.  Hysteresis generated by attractive interaction: oscillating behavior of a vibrating tip–microlever system near a surface , 1998 .

[12]  Paul K. Hansma,et al.  Tapping mode atomic force microscopy in liquids , 1994 .

[13]  L. Nony,et al.  Nonlinear dynamical properties of an oscillating tip–cantilever system in the tapping mode , 1999, physics/0510099.

[14]  E. Meyer,et al.  Phase variation experiments in non-contact dynamic force microscopy using phase locked loop techniques , 1999 .

[15]  H. Yokoyama,et al.  Role of space charge in scanned probe oxidation , 1998 .

[16]  Javier Tamayo,et al.  Effects of elastic and inelastic interactions on phase contrast images in tapping-mode scanning force microscopy , 1997 .

[17]  L. Kantorovich,et al.  Role of image forces in non-contact scanning force microscope images of ionic surfaces , 2000 .

[18]  Ahmet Oral,et al.  Quantitative atom-resolved force gradient imaging using noncontact atomic force microscopy , 2001 .

[19]  E. Meyer,et al.  Experimental aspects of dissipation force microscopy , 2000 .

[20]  M. Davies,et al.  Optimizing phase imaging via dynamic force curves , 2000 .

[21]  Peter Grutter,et al.  Metallic adhesion forces and tunneling between atomically defined tip and sample , 2000 .

[22]  L. Monaco,et al.  Nanoscopic structure of DNA condensed for gene delivery. , 1997, Nucleic acids research.

[23]  Dynamics of the cantilever in noncontact dynamic force microscopy: The steady-state approximation and beyond , 2001 .

[24]  E. Meyer,et al.  Dynamic force microscopy of copper surfaces : atomic resolution and distance dependence of tip-sample interaction and tunneling current , 2000 .

[25]  D. Maugis Adhesion of spheres : the JKR-DMT transition using a dugdale model , 1992 .

[26]  J. Vesenka,et al.  Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. , 1993, Biophysical journal.

[27]  Oleg Kolosov,et al.  Ultrasonic force microscopy for nanometer resolution subsurface imaging , 1994 .

[28]  F. Giessibl,et al.  Atomic Resolution of the Silicon (111)-(7x7) Surface by Atomic Force Microscopy , 1995, Science.

[29]  U. Dürig,et al.  Extracting interaction forces and complementary observables in dynamic probe microscopy , 2000 .

[30]  C. Lieber,et al.  Chemically-Sensitive Imaging in Tapping Mode by Chemical Force Microscopy: Relationship between Phase Lag and Adhesion , 1998 .

[31]  M. Valle,et al.  The interaction of DNA with bacteriophage phi 29 connector: a study by AFM and TEM. , 1996, Journal of structural biology.

[32]  M. Davies,et al.  Interpretation of tapping mode atomic force microscopy data using amplitude-phase-distance measurements , 1998 .

[33]  B. Pittenger,et al.  Measuring average tip-sample forces in intermittent-contact (tapping) force microscopy in air , 2000 .

[34]  Krueger,et al.  Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects. , 1996, Physical review. B, Condensed matter.

[35]  T. Uda,et al.  First-principles investigation of tip-surface interaction on a GaAs(110) surface: Implications for atomic force and scanning tunneling microscopies , 1999 .

[36]  Harald Fuchs,et al.  Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation , 1996 .

[37]  Amikam Aharoni,et al.  Agreement Between Theory and Experiment , 1995 .

[38]  T. Uda,et al.  QUANTITY MEASURED IN FREQUENCY-SHIFT-MODE ATOMIC-FORCE MICROSCOPY : AN ANALYSIS WITH A NUMERICAL MODEL , 1999 .

[39]  Dong Chen,et al.  Driven nonlinear atomic force microscopy cantilevers: From noncontact to tapping modes of operation , 1996 .

[40]  A. Toda,et al.  Normal and lateral force investigation using magnetically activated force sensors , 2000 .

[41]  M. Tsukada,et al.  Damping mechanism in dynamic force microscopy. , 2000, Physical review letters.

[42]  Peter Grutter,et al.  Adhesion interaction between atomically defined tip and sample , 1998 .

[43]  J. Mannhart,et al.  Imaging of atomic orbitals with the Atomic Force Microscope - experiments and simulations , 2001 .

[44]  Bielefeldt,et al.  Subatomic Features on the Silicon (111)-(7x7) Surface Observed by Atomic Force Microscopy. , 2000, Science.

[45]  F. Giessibl Atomic Force Microscopy in Ultrahigh Vacuum , 1994 .

[46]  Ricardo Garcia,et al.  Patterning of silicon surfaces with noncontact atomic force microscopy: Field-induced formation of nanometer-size water bridges , 1999 .

[47]  D. Hamann,et al.  Theory and Application for the Scanning Tunneling Microscope , 1983 .

[48]  M. Tsukada,et al.  Theory for the effect of the tip surface interaction potential on atomic resolution in forced vibration system of noncontact AFM , 1999 .

[49]  Molecular dynamics simulations of dynamic force microscopy: applications to the Si(111)-7×7 surface , 2000, cond-mat/0003004.

[50]  Gumbsch,et al.  Directional anisotropy in the cleavage fracture of silicon , 2000, Physical review letters.

[51]  R. Wiesendanger,et al.  Dynamic scanning force microscopy at low temperatures on a van der Waals surface: graphite (0001) , 1999 .

[52]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[53]  M. Payne,et al.  ROLE OF COVALENT TIP-SURFACE INTERACTIONS IN NONCONTACT ATOMIC FORCE MICROSCOPY ON REACTIVE SURFACES , 1997 .

[54]  A. Ruiter,et al.  Near-field fluorescence imaging of genetic material: toward the molecular limit. , 1997, Journal of structural biology.

[55]  R. Wiesendanger,et al.  Simultaneous imaging of the In and As sublattice on InAs(110)-(1×1) with dynamic scanning force microscopy , 1999 .

[56]  M. Whangbo,et al.  Importance of the indentation depth in tapping-mode atomic force microscopy study of compliant materials , 1999 .

[57]  Giessibl Theory for an electrostatic imaging mechanism allowing atomic resolution of ionic crystals by atomic force microscopy. , 1992, Physical review. B, Condensed matter.

[58]  Bharat Bhushan,et al.  Theoretical investigation of the distance dependence of capillary and van der Waals forces in scanning force microscopy , 2000 .

[59]  M. Lantz,et al.  Dynamic force microscopy in fluid , 1999 .

[60]  R. Wiesendanger,et al.  Dynamic scanning force microscopy at low temperatures on a noble-gas crystal: Atomic resolution on the xenon(111) surface , 1999 .

[61]  T. Kenny,et al.  Silicon dopant imaging by dissipation force microscopy , 1999 .

[62]  Harald Fuchs,et al.  Conservative and dissipative tip-sample interaction forces probed with dynamic AFM , 1999 .

[63]  H. Hölscher,et al.  Interpretation of “true atomic resolution” images of graphite (0001) in noncontact atomic force microscopy , 2000 .

[64]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[65]  A. Engel,et al.  The height of biomolecules measured with the atomic force microscope depends on electrostatic interactions. , 1997, Biophysical journal.

[66]  Subatomic features in atomic force microscopy images. , 2001, Science.

[67]  Javier Tamayo,et al.  Relationship between phase shift and energy dissipation in tapping-mode scanning force microscopy , 1998 .

[68]  E. Meyer,et al.  Atomically resolved edges and kinks of NaCl islands on Cu(111) : experiment and theory , 2000 .

[69]  NANOSCALE CALIPER FOR DIRECT MEASUREMENT OF SCANNING FORCE MICROSCOPY PROBES , 1997 .

[70]  D. Sarid,et al.  Kinetics of lossy grazing impact oscillators , 1998 .

[71]  H. Hölscher,et al.  Atomic resolution in scanning force microscopy: Concepts, requirements, contrast mechanisms, and image interpretation , 2000 .

[72]  Eric S. Snow,et al.  Single‐atom point contact devices fabricated with an atomic force microscope , 1996 .

[73]  K. Fukui,et al.  Imaging of atomic-scale structure of oxide surfaces and adsorbed molecules by noncontact atomic force microscopy , 1999 .

[74]  J. Frommer,et al.  Force Microscopy Study of Friction and Elastic Compliance of Phase-Separated Organic Thin Films , 1994 .

[75]  Lantz,et al.  Low temperature scanning force microscopy of the Si(111)-(7x7) surface , 2000, Physical review letters.

[76]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[77]  J. A. Greenwood,et al.  The mechanics of adhesion of viscoelastic solids , 1981 .

[78]  C. Bustamante,et al.  Polymer chain statistics and conformational analysis of DNA molecules with bends or sections of different flexibility. , 1998, Journal of molecular biology.

[79]  Francesc Pérez-Murano,et al.  Local oxidation of silicon surfaces by dynamic force microscopy: Nanofabrication and water bridge formation , 1998 .

[80]  Ricardo Garcia,et al.  Nano-oxidation of silicon surfaces: Comparison of noncontact and contact atomic-force microscopy methods , 2001 .

[81]  Reinhard Lipowsky,et al.  Liquid Bridges in Chemically Structured Slit Pores , 2001 .

[82]  M. Ohta,et al.  Defect Motion on an InP(110) Surface Observed with Noncontact Atomic Force Microscopy , 1995, Science.

[83]  M. Ishikawa,et al.  Atomic resolution noncontact atomic force and scanning tunneling microscopy of TiO2(110)-(1 x 1) and - (1 x 2): simultaneous imaging of surface structures and electronic states. , 2001, Physical review letters.

[84]  R. Wiesendanger,et al.  Dynamic-mode scanning force microscopy study of n -InAs(110)- ( 1 × 1 ) at low temperatures , 2000 .

[85]  L. Samuelson,et al.  Controlled manipulation of nanoparticles with an atomic force microscope , 1995 .

[86]  Larson,et al.  Ab initio theory of the Si(111)-(7 x 7) surface reconstruction: A challenge for massively parallel computation. , 1992, Physical review letters.

[87]  F. Giessibl,et al.  Physical interpretation of frequency-modulation atomic force microscopy , 2000 .

[88]  E. Meyer,et al.  Dynamic force microscopy across steps on the Si(111)-(7×7) surface , 2000 .

[89]  L. Wang The role of damping in phase imaging in tapping mode atomic force microscopy , 1999 .

[90]  M. Tomitori,et al.  Bias dependence of Si(111)7×7 images observed by noncontact atomic force microscopy , 2000 .

[91]  Ricardo Garcia,et al.  Phase contrast and surface energy hysteresis in tapping mode scanning force microsopy , 1999 .

[92]  H. K. Wickramasinghe,et al.  Kelvin probe force microscopy , 1991 .

[93]  Brune,et al.  Atomic-resolution imaging of close-packed metal surfaces by scanning tunneling microscopy. , 1989, Physical review letters.

[94]  K. Sueoka,et al.  Atomic resolved imaging of cleaved NiO(100) surfaces by NC-AFM , 2000 .

[95]  M. Miles,et al.  High-Q dynamic force microscopy in liquid and its application to living cells. , 2001, Biophysical journal.

[96]  Lars Montelius,et al.  Fabrication of quantum devices by Ångström-level manipulation of nanoparticles with an atomic force microscope , 1998 .

[97]  L. Wang,et al.  Analytical descriptions of the tapping-mode atomic force microscopy response , 1998 .

[98]  B. Gotsmann,et al.  Dynamic force spectroscopy of conservative and dissipative forces in an Al-Au(111) tip-sample system. , 2001, Physical review letters.

[99]  B. Derjaguin,et al.  General theoretical consideration of the influence of surface forces on contact deformations and the reciprocal adhesion of elastic spherical particles , 1983 .

[100]  Y. Sugawara,et al.  True atomic resolution imaging of surface structure and surface charge on the GaAs(110) , 1999 .

[101]  Thomas Thundat,et al.  Harmonic response of near‐contact scanning force microscopy , 1995 .

[102]  A. Rohl,et al.  Model of noncontact scanning force microscopy on ionic surfaces , 1999 .

[103]  H. Hansma Atomic force microscopy of biomolecules , 1996 .

[104]  Franz J. Giessibl,et al.  Atomic resolution on Si(111)-(7×7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork , 2000 .

[105]  Julio Gómez-Herrero,et al.  The role of shear forces in scanning force microscopy: a comparison between the jumping mode and tapping mode , 2000 .

[106]  C. Bustamante,et al.  Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis. , 1996, Journal of molecular biology.

[107]  H. Hansma,et al.  Motion and enzymatic degradation of DNA in the atomic force microscope. , 1994, Biophysical journal.

[108]  Darrell H. Reneker,et al.  CHARACTERIZATION OF POLYMER SURFACES WITH ATOMIC FORCE MICROSCOPY , 1997 .

[109]  Ricardo Garcia,et al.  Deformation, Contact Time, and Phase Contrast in Tapping Mode Scanning Force Microscopy , 1996 .

[110]  S. Lindsay,et al.  A magnetically driven oscillating probe microscope for operation in liquids , 1996 .

[111]  M. Tsukada,et al.  Theory of noncontact dissipation force microscopy , 1999 .

[112]  A. Shluger,et al.  Unambiguous interpretation of atomically resolved force microscopy images of an insulator. , 2001, Physical review letters.

[113]  G. Thornton,et al.  Non-contact atomic force microscopy imaging of TiO2(100) surfaces , 1999 .

[114]  Fransiska S. Franke,et al.  Envelope reconstruction of probe microscope images , 1993 .

[115]  L. Nony,et al.  Relationship between the non linear dynamic behaviour of an oscillating tip–microlever system and the contrast at the atomic scale , 1999, physics/0510121.

[116]  Georges Hadziioannou,et al.  Scanning Force Microscopy with Chemical Specificity: An Extensive Study of Chemically Specific Tip−Surface Interactions and the Chemical Imaging of Surface Functional Groups , 1997 .

[117]  M. Marth,et al.  A unifying view on some experimental effects in tapping-mode atomic force microscopy , 1999 .

[118]  Robert W. Stark,et al.  Fourier transformed atomic force microscopy: tapping mode atomic force microscopy beyond the Hookian approximation , 2000 .

[119]  Ricardo Garcia,et al.  Amplitude, deformation and phase shift in amplitude modulation atomic force microscopy: a numerical study for compliant materials , 2001 .

[120]  K. Fukui,et al.  Atom-Resolved Image of the TiO 2 \(110\) Surface by Noncontact Atomic Force Microscopy , 1997 .

[121]  J. Loubet,et al.  Phase imaging: Deep or superficial? , 1999 .

[122]  Peter Gumbsch,et al.  An ab initio study of the cleavage anisotropy in silicon , 2000 .

[123]  G. Thornton,et al.  Imaging reconstructed TiO2 surfaces with non-contact atomic force microscopy , 2000 .

[124]  U. Dürig,et al.  Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy , 1999 .

[125]  T. Uda,et al.  First-principles simulation of atomic force microscopy image formation on a GaAs(110) surface: Effect of tip morphology , 2001 .

[126]  Harald Fuchs,et al.  How to measure energy dissipation in dynamic mode atomic force microscopy , 1999 .

[127]  M. Whangbo,et al.  Effect of viscoelastic properties of polymers on the phase shift in tapping mode atomic force microscopy , 1998 .

[128]  Ute Rabe,et al.  Acoustic microscopy by atomic force microscopy , 1994 .

[129]  Jan Greve,et al.  Tapping mode atomic force microscopy in liquid , 1994 .

[130]  John E. Sader,et al.  Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids , 2000 .

[131]  J. Sader Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope , 1998 .

[132]  Javier Tamayo,et al.  Interpretation of phase contrast in tapping mode AFM and shear force microscopy: a study of Nafion , 2001 .

[133]  Y. Sugawara,et al.  High-resolution imaging of organic monolayers using noncontact AFM , 2000 .

[134]  Hendrik Hölscher,et al.  Calculation of the frequency shift in dynamic force microscopy , 1999 .

[135]  Kiyoyuki Terakura,et al.  Surface-tip interactions in noncontact atomic-force microscopy on reactive surfaces: Si(111) , 1998 .

[136]  Paul K. Hansma,et al.  Studies of vibrating atomic force microscope cantilevers in liquid , 1996 .

[137]  Winfried Denk,et al.  Local electrical dissipation imaged by scanning force microscopy , 1991 .

[138]  Ricardo Garcia,et al.  Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy , 1999 .

[139]  Y. Thomann,et al.  Characterization of the Morphologies and Nanostructures of Blends of Poly(styrene)-block-poly(ethene-co-but-1-ene)-block-poly(styrene) with Isotactic and Atactic Polypropylenes by Tapping-Mode Atomic Force Microscopy , 1998 .

[140]  A. Engel,et al.  Tapping-mode atomic force microscopy produces faithful high-resolution images of protein surfaces. , 1999, Biophysical journal.

[141]  Alfredo Franco-Obregón,et al.  Detailed analysis of forces influencing lateral resolution for Q-control and tapping mode , 2001 .

[142]  K. Terakura,et al.  Tip–surface interactions in noncontact atomic force microscopy on reactive surfaces , 2000 .

[143]  Y. Sugawara,et al.  Distance dependence of noncontact-AFM image contrast on Si(111)×–Ag structure , 1999 .

[144]  H. Hölscher,et al.  Determination of Tip-Sample Interaction Potentials by Dynamic Force Spectroscopy , 1999 .

[145]  Winkler,et al.  Imaging material properties by resonant tapping-force microscopy: A model investigation. , 1996, Physical review. B, Condensed matter.

[146]  J. Mannhart,et al.  Calculation of the optimal imaging parameters for frequency modulation atomic force microscopy , 1999 .

[147]  Franz J. Giessibl,et al.  Forces and frequency shifts in atomic-resolution dynamic-force microscopy , 1997 .

[148]  Greg Haugstad,et al.  Mechanisms of dynamic force microscopy on polyvinyl alcohol: region-specific non-contact and intermittent contact regimes , 1999 .

[149]  J. Molenaar,et al.  Dynamics of vibrating atomic force microscopy , 2000 .

[150]  H. Hölscher,et al.  Quantitative analysis of dynamic-force-spectroscopy data on graphite(0001) in the contact and noncontact regimes , 2000 .

[151]  García,et al.  Amplitude curves and operating regimes in dynamic atomic force microscopy , 2000, Ultramicroscopy.

[152]  M. Ohta,et al.  Role of a covalent bonding interaction in noncontact-mode atomic-force microscopy on Si(111)7×7 , 1997 .

[153]  A. Atalar,et al.  Analysis of tip–sample interaction in tapping-mode atomic force microscope using an electrical circuit simulator , 2001 .

[154]  Jason Cleveland,et al.  Energy dissipation in tapping-mode atomic force microscopy , 1998 .

[155]  Meyer,et al.  Velocity dependence of atomic friction , 2000, Physical review letters.

[156]  Anthony W. Gummer,et al.  Experimental determination of the mechanical impedance of atomic force microscopy cantilevers in fluids up to 70 kHz , 2000 .

[157]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[158]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[159]  K. Terakura,et al.  Effect of tip morphology on image formation in noncontact atomic force microscopy: InP(110) , 2001 .

[160]  D. Müller,et al.  From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy. , 2001, Biophysical journal.

[161]  T. Kawai,et al.  Observation of single- and double-stranded DNA using non-contact atomic force microscopy , 1999 .

[162]  Sergei Magonov,et al.  AFM study of thermotropic structural transitions in poly(diethylsiloxane) , 1997 .

[163]  rensen,et al.  Role of attractive forces in tapping tip force microscopy , 1997 .

[164]  Lin,et al.  Ab initio total-energy calculations for extremely large systems: Application to the Takayanagi reconstruction of Si(111). , 1992, Physical review letters.

[165]  Á. S. Paulo,et al.  High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. , 2000, Biophysical journal.

[166]  S. Jarvis,et al.  Direct mechanical measurement of interatomic potentials , 1996, Nature.

[167]  T. Uda,et al.  Surface topography of theSi(111)−7×7reconstruction , 2000 .

[168]  P. Leclère,et al.  Quantitative Measurement of the Mechanical Contribution to Tapping-Mode Atomic Force Microscopy Images of Soft Materials , 2000 .