Combustion characteristics of high-energy Al/CuO composite powders: The role of oxidizer structure and pellet density

[1]  Whi Dong Kim,et al.  Effect of metal oxide nanostructures on the explosive property of metastable intermolecular composite particles , 2011 .

[2]  Y. Chabal,et al.  Multilayered Al/CuO thermite formation by reactive magnetron sputtering: Nano versus micro , 2010 .

[3]  P. Vashishta,et al.  Nanoscale energetic materials , 2010 .

[4]  H. Hng,et al.  Synthesis and characterization of self-assembled nanoenergetic Al–Fe2O3 thermite system , 2010 .

[5]  Kaili Zhang,et al.  A Nano Initiator Realized by Integrating Al/CuO-Based Nanoenergetic Materials With a Au/Pt/Cr Microheater , 2008, Journal of Microelectromechanical Systems.

[6]  Tanmoy Das,et al.  Superconductivity and topological Fermi surface transitions in electron-doped cuprates near optimal doping , 2007, 0711.1504.

[7]  Ronald A. Guidotti,et al.  Thermally activated ("thermal") battery technology Part I: An overview , 2006 .

[8]  S. Son,et al.  Melt dispersion mechanism for fast reaction of nanothermites , 2006 .

[9]  M. Zachariah,et al.  Tuning the reactivity of energetic nanoparticles by creation of a core-shell nanostructure. , 2005, Nano letters.

[10]  R. Guidotti,et al.  Characterization of Fe/KClO4 Heat Powders and Pellets , 2005 .

[11]  M. Zachariah,et al.  Enhancing the Rate of Energy Release from NanoEnergetic Materials by Electrostatically Enhanced Assembly , 2004 .

[12]  Michelle L. Pantoya,et al.  Laser ignition of nanocomposite thermites , 2004 .

[13]  S. Son Performance and Characterization of Nanoenergetic Materials at Los Alamos , 2003 .